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Macroscopic Electric Field in a Material
We first want to ask two ques/ons:
• What is the rela/on in the material between the dielectric polariza/on 

P and the macroscopic electric field E in the Maxwell equa/ons? 
• What is the rela/on between the dielectric polariza/on and the local 

electric field which acts at the site of an atom in the la>ce? The local 
field determines the dipole moment of the atom. 

Maxwell Equa+ons  (in CGS)
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chapter 16: dielectrics and ferroelectrics

First we relate the applied electric field to the internal electric field in a
dielectric crystal. The study of the electric field within dielectric matter arises
when we ask:

• What is the relation in the material between the dielectric polarization P
and the macroscopic electric field E in the Maxwell equations?

• What is the relation between the dielectric polarization and the local 
electric field which acts at the site of an atom in the lattice? The local field
determines the dipole moment of the atom.

Maxwell Equations

Polarization

The polarization P is defined as the dipole moment per unit 
volume, averaged over the volume of a cell. The total dipole moment is 
defined as

(1)

where rn is the position vector of the charge qn. The value of the sum will be
independent of the origin chosen for the position vectors, provided that the
system is neutral: Let then 
The dipole moment of a water molecule is shown in Fig. 1.

The electric field at a point r from a dipole moment p is given by a stan-
dard result of elementary electrostatics:

(CGS) (2)

The lines of force of a dipole pointing along the z axis are shown in Fig. 2.
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Polarization 

The polarization P is defined as the 
dipole moment per unit volume, 
averaged over the volume of a cell. 
The total dipole moment is 
defined as 
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the posi/on vector of the charge qn. 
where rn is 



The electric field at a point r from a 
dipole moment p is given by a 
standard result of elementary 
electrosta/cs: 
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Figure 1  The permanent dipole moment of a molecule of water has the
magnitude 1.9 ! 10"18 esu-cm and is directed from the O2" ion toward
the midpoint of the line connecting the H# ions. (To convert to SI units,
multiply p by ! 1011.)1

3
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!

" = p cos !

cos !sin !

(3 cos2 ! – 1)

Ex = 3p

r 2

r 3
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r 3

Figure 2  Electrostatic potential and field components in CGS at position r, ! for a dipole p
directed along the z axis. For ! $ 0, we have Ex $ Ey $ 0 and Ez $ 2p/r3; for ! $ #/2 we have 
Ex $ Ey $ 0 and Ez $ "p/r3. To convert to SI, replace p by p/4#$0. (After E. M. Purcell.)

NOTATION: $0 $ 107/4#c2 ;
(CGS) D $ E # 4#P $ $E $ (1 # 4#%)E ; & $ p/Elocal ;

(SI) D $ $0E # P $ $$0E $ (1 # %)$0E ; & $ p/Elocal ;

$CGS $ $SI ; 4#%CGS $ %SI ; &SI $ 4#$0&CGS .
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The lines of force of a dipole pointing 
along the z axis are shown in the 
right.
We define the macroscopic electric field E(r0) as the average field over the 
volume of the crystal cell that contains the la>ce point r0: 

MACROSCOPIC ELECTRIC FIELD

One contribution to the electric field inside a body is that of the applied
electric field, defined as

(3)

The other contribution to the electric field is the sum of the fields of all
charges that constitute the body. If the body is neutral, the contribution to the
average field may be expressed in terms of the sum of the fields of atomic
dipoles.

We define the average electric field E(r0) as the average field over the
volume of the crystal cell that contains the lattice point r0:

(4)

where e(r) is the microscopic electric field at the point r. The field E is a
much smoother quantity than the microscopic field e. We could well have
written the dipole field (2) as e(r) because it is a microscopic unsmoothed
field.

We call E the macroscopic electric field. It is adequate for all problems
in the electrodynamics of crystals provided that we know the connection be-
tween E, the polarization P, and the current density j, and provided that the
wavelengths of interest are long in comparison with the lattice spacing.1

To find the contribution of the polarization to the macroscopic field, we
can simplify the sum over all the dipoles in the specimen. By a famous theo-
rem of electrostatics2 the macroscopic electric field caused by a uniform polar-
ization is equal to the electric field in vacuum of a fictitious surface charge

E(r0) ! 1
Vc

 !  dV e(r)� ,

E0 ! field produced by fixed charges external to the body� .
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1A detailed derivation of the  Maxwell equations for the macroscopic fields E and B, starting
from the Maxwell equations in terms of the microscopic fields e and h, is given by E. M. Purcell,
Electricity and magnetism, 2nd ed., McGraw-Hill, 1985.

2The electrostatic potential in CGS units of a dipole p is !(r) ! p " grad(1/r). For a volume
distribution of polarization P we have

which by a vector identity becomes

If P is constant, then div P ! 0 and by the Gauss theorem we have

where "dS is an element of charge on the surface of the body. This completes the proof.

!(r) ! !  dS 
Pn
r  ! !  dS "r � ,

!(r) ! !  dV "#
1
r div P $ div Pr#� .

!(r) ! !  dV "P ! grad 1r#� ,
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where e(r) is the microscopic electric field at the 
point r. 

It is adequate for all problems in the electrodynamics of crystals provided 
that we know the connec/on between E, the polariza/on P, and the current 
density j, and provided that the wavelengths of interest are long in 
comparison with the la>ce spacing.



By a famous theorem of electrostatics the macroscopic electric field 
caused by a uniform polarization P is equal to the electric field in vacuum 
of a fictitious surface charge density σ = ň･P on the surface of the body. 
Here ň is the unit normal to the surface, drawn outward from the 
polarized matter. 

density ! ! " P on the surface of the body. Here is the unit normal to the
surface, drawn outward from the polarized matter.

We apply the result to a thin dielectric slab (Fig. 3a) with a uniform vol-
ume polarization P. The electric field E1(r) produced by the polarization is
equal to the field produced by the fictitious surface charge density ! ! " P
on the surface of the slab. On the upper boundary the unit vector is directed
upward and on the lower boundary is directed downward. The upper bound-
ary bears the fictitious charge ! ! " P ! P per unit area, and the lower
boundary bears #P per unit area.

The electric field E1 due to these charges has a simple form at any point
between the plates, but comfortably removed from their edges. By Gauss’s law

(CGS) (4a)

We add E1 to the applied field E0 to obtain the total macroscopic field 
inside the slab, with the unit vector normal to the plane of the slab:

(CGS) (5)

(SI)

We define

(6)

This field is smoothly varying in space inside and outside the body and satisfies
the Maxwell equations as written for the macroscopic field E. The reason E1 is
a smooth function when viewed on an atomic scale is that we have 
replaced the discrete lattice of dipoles pj with the smoothed polarization P.

E1 ! field of the surface charge denisty n̂ ! P on the boundary� .

E ! E0 $ E1 ! E0 # P
"0

 ẑ� .

E ! E0 $ E1 ! E0 # 4#Pẑ� ;

ẑ

(SI) � E1 ! # 

!! !
"0

 ! P
"0

� .E1 ! #4# !! ! ! #4#P� ;

n̂
n̂

n̂
n̂

n̂n̂
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Figure 3  (a) A uniformly polarized dielectric slab, with the polarization vector P normal to the
plane of the slab. (b) A pair of uniformly charged parallel plates which give rise to the identical
electric field E1 as in (a). The upper plate has the surface charge density ! ! $P, and the lower
plate has ! ! #P.
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By Gauss’s law,                                         .     

We add E1 to the external applied field E0 to obtain the total macroscopic 
field E inside the slab, with zˆ the unit vector normal to the plane of the 
slab: 

density ! ! " P on the surface of the body. Here is the unit normal to the
surface, drawn outward from the polarized matter.
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Figure 3  (a) A uniformly polarized dielectric slab, with the polarization vector P normal to the
plane of the slab. (b) A pair of uniformly charged parallel plates which give rise to the identical
electric field E1 as in (a). The upper plate has the surface charge density ! ! $P, and the lower
plate has ! ! #P.
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If the polariza/on is uniform within the body, the only contribu/ons to the 
macroscopic field E are from E0 and E1 .



Depolarization Field
The field E1 is called the depolariza5on field, 
for within the body it tends to oppose the 
external applied field E0 as in the figure below. 
If Px, Py, Pz are the components of the 
polariza/on P referred to the principal axes of 
an ellipsoid, then the components of the 
depolariza/on field are wriNen 

Depolarization Field, E1

If the polarization is uniform within the body, the only contributions to the
macroscopic field are from E0 and E1:

(7)

Here E0 is the applied field and E1 is the field due to the uniform polarization.
The field E1 is called the depolarization field, for within the body it

tends to oppose the applied field E0 as in Fig. 4. Specimens in the shape of 
ellipsoids, a class that includes spheres, cylinders, and discs as limiting forms,
have an advantageous property: a uniform polarization produces a uniform de-
polarization field inside the body. This is a famous mathematical result demon-
strated in classic texts on electricity and magnetism.3

If Px, Py, Pz are the components of the polarization P referred to the principal
axes of an ellipsoid, then the components of the depolarization field are written

(CGS) (8)

(SI)

Here Nx, Ny, Nz are the depolarization factors; their values depend on the
ratios of the principal axes of the ellipsoid. The N’s are positive and satisfy the
sum rule Nx ! Ny ! Nz " 4! in CGS, and Nx ! Ny ! Nz " 1 in SI.

Values of N parallel to the figure axis of ellipsoids of revolution are plotted
in Fig. 5. Additional cases have been calculated by Osborn4 and by Stoner. In
limiting cases N has the values:

N N
Shape Axis (CGS) (SI)

Sphere any 4!/3 1/3
Thin slab normal 4! 1
Thin slab in plane 0 0
Long circular cylinder longitudinal 0 0
Long circular cylinder transverse 2! 1/2

E1x " #
NxPx

"0
� ; � � E1y " #

NyPy

"0
� ; � � E1z " #

NzPz
"0

� .

E1x " #NxPx� ; � � E1y " #NyPy� ; � � E1z " #NzPz� ;

E " E0 ! E1� .
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3R. Becker, Electromagnetic fields and interactions, Blaisdell, 1964, pp. 102–107.
4J. A. Osborn, Phys. Rev. 67, 351 (1945); E. C. Stoner, Philosophical Magazine 36, 803 (1945).

We can reduce the depolarization field to zero in two ways, either by working
parallel to the axis of a long fine specimen or by making an electrical connection
between electrodes deposited on the opposite surfaces of a thin slab.
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A uniform applied field E0 will induce uniform polarization in an ellipsoid.
We introduce the dielectric susceptibility ! such that the relations

(CGS) (9)

connect the macroscopic field E inside the ellipsoid with the polarization P.
Here !SI ! 4"!CGS.

If E0 is uniform and parallel to a principal axis of the ellipsoid, then

(CGS) (10)

by (8), whence

(CGS) (11)

(SI)

The value of the polarization depends on the depolarization factor N.

P ! !(#0E0 " NP)� ; � � P ! 
!#0

1 # N!
 E0� .

P ! !(E0 " NP)� ; � �  P ! 
!

1 # N!
 E0� ;

(SI) E ! E0 " NP
#0

� ,E ! E0 # E1 ! E0 " NP� ;

(SI) � P ! #0!E� ,P ! !E� ;
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Figure 4  The depolarization field E1 is op-
posite to P. The fictitious surface charges are
indicated: the field of these charges is E1

within the ellipsoid.
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Figure 5  Depolarization factor N
parallel to the figure axis of ellip-
soids of revolution, as a function
of the axial ratio c/a.
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Here Nx, Ny, Nz are the depolariza5on 
factors; their values depend on the 
ra/os of the principal axes of the 
ellipsoid. The N’s are posi/ve and 
sa/sfy the sum rule Nx + Ny + Nz = 4𝜋 
in CGS,and Nx + Ny + Nz = 1 in SI. 

A uniform E0 will induce 
uniform polariza/on in an 
ellipsoid. 

We introduce the dielectric susceptibility χ such that polarization             , then 
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A uniform applied field E0 will induce uniform polarization in an ellipsoid.
We introduce the dielectric susceptibility ! such that the relations

(CGS) (9)

connect the macroscopic field E inside the ellipsoid with the polarization P.
Here !SI ! 4"!CGS.
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of the axial ratio c/a.

DI���RYE����������������1.��1BHF����

Depolarization Field, E1

If the polarization is uniform within the body, the only contributions to the
macroscopic field are from E0 and E1:

(7)

Here E0 is the applied field and E1 is the field due to the uniform polarization.
The field E1 is called the depolarization field, for within the body it

tends to oppose the applied field E0 as in Fig. 4. Specimens in the shape of 
ellipsoids, a class that includes spheres, cylinders, and discs as limiting forms,
have an advantageous property: a uniform polarization produces a uniform de-
polarization field inside the body. This is a famous mathematical result demon-
strated in classic texts on electricity and magnetism.3

If Px, Py, Pz are the components of the polarization P referred to the principal
axes of an ellipsoid, then the components of the depolarization field are written

(CGS) (8)

(SI)

Here Nx, Ny, Nz are the depolarization factors; their values depend on the
ratios of the principal axes of the ellipsoid. The N’s are positive and satisfy the
sum rule Nx ! Ny ! Nz " 4! in CGS, and Nx ! Ny ! Nz " 1 in SI.

Values of N parallel to the figure axis of ellipsoids of revolution are plotted
in Fig. 5. Additional cases have been calculated by Osborn4 and by Stoner. In
limiting cases N has the values:

N N
Shape Axis (CGS) (SI)

Sphere any 4!/3 1/3
Thin slab normal 4! 1
Thin slab in plane 0 0
Long circular cylinder longitudinal 0 0
Long circular cylinder transverse 2! 1/2

E1x " #
NxPx

"0
� ; � � E1y " #

NyPy

"0
� ; � � E1z " #

NzPz
"0

� .

E1x " #NxPx� ; � � E1y " #NyPy� ; � � E1z " #NzPz� ;

E " E0 ! E1� .
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3R. Becker, Electromagnetic fields and interactions, Blaisdell, 1964, pp. 102–107.
4J. A. Osborn, Phys. Rev. 67, 351 (1945); E. C. Stoner, Philosophical Magazine 36, 803 (1945).

We can reduce the depolarization field to zero in two ways, either by working
parallel to the axis of a long fine specimen or by making an electrical connection
between electrodes deposited on the opposite surfaces of a thin slab.
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Local Electric Field at an Atom
The value of the local electric field that acts at the site of an atom is 
significantly different from the value of the macroscopic electric field. 
Consider the field that acts on the atom at the center of the sphere. If all 
dipoles are parallel to the z axis and have magnitude p, the z component of 
the field at the center due to all other dipoles is, 

LOCAL ELECTRIC FIELD AT AN ATOM

The value of the local electric field that acts at the site of an atom is signif-
icantly different from the value of the macroscopic electric field. We can con-
vince ourselves of this by consideration of the local field at a site with a cubic
arrangement of neighbors5 in a crystal of spherical shape. The macroscopic
electric field in a sphere is

(CGS) (12)

(SI)

by (10).
But consider the field that acts on the atom at the center of the sphere

(this atom is not unrepresentative). If all dipoles are parallel to the z axis and
have magnitude p, the z component of the field at the center due to all other
dipoles is, from (2),

(CGS) (13)

In SI we replace p by p/4!"0. The x, y, z directions are equivalent because of
the symmetry of the lattice and of the sphere; thus

whence Edipole ! 0.
The correct local field is just equal to the applied field, Elocal ! E0, for an

atom site with a cubic environment in a spherical specimen. Thus the local
field is not the same as the macroscopic average field E.

We now develop an expression for the local field at a general lattice site,
not necessarily of cubic symmetry. The local field at an atom is the sum of the
electric field E0 from external sources and of the field from the dipoles within
the specimen. It is convenient to decompose the dipole field so that part of the
summation over dipoles may be replaced by integration.

We write

(14)Elocal ! E0 " E1 " E2 " E3� .

! 
i

z2
i

r5
i
 ! ! 

i

x2
i

r5
i
 ! ! 

i

y2
i

r5
i
� ,

Edipole ! p ! 
i

3z2
i  # ri

2
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5
i

  ! p ! 
i

2z2
i  # x2

i  # y2
i
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5
i

� .

E ! E0 " E1 ! E0 # 1
3"0

 P� ,

E ! E0 " E1 ! E0 # 4!
3  P� ;
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5Atom sites in a cubic crystal do not necessarily have cubic symmetry: thus the O2# sites in the
barium titanate structure of Fig. 10 do not have a cubic environment. However, the Na" and Cl#

sites in the NaCl structure and the Cs" and Cl# sites in the CsCl structure have cubic symmetry.
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The x, y, z direc/ons are equivalent because of the symmetry; thus 

LOCAL ELECTRIC FIELD AT AN ATOM

The value of the local electric field that acts at the site of an atom is signif-
icantly different from the value of the macroscopic electric field. We can con-
vince ourselves of this by consideration of the local field at a site with a cubic
arrangement of neighbors5 in a crystal of spherical shape. The macroscopic
electric field in a sphere is

(CGS) (12)

(SI)

by (10).
But consider the field that acts on the atom at the center of the sphere

(this atom is not unrepresentative). If all dipoles are parallel to the z axis and
have magnitude p, the z component of the field at the center due to all other
dipoles is, from (2),

(CGS) (13)

In SI we replace p by p/4!"0. The x, y, z directions are equivalent because of
the symmetry of the lattice and of the sphere; thus

whence Edipole ! 0.
The correct local field is just equal to the applied field, Elocal ! E0, for an

atom site with a cubic environment in a spherical specimen. Thus the local
field is not the same as the macroscopic average field E.

We now develop an expression for the local field at a general lattice site,
not necessarily of cubic symmetry. The local field at an atom is the sum of the
electric field E0 from external sources and of the field from the dipoles within
the specimen. It is convenient to decompose the dipole field so that part of the
summation over dipoles may be replaced by integration.

We write

(14)Elocal ! E0 " E1 " E2 " E3� .
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5Atom sites in a cubic crystal do not necessarily have cubic symmetry: thus the O2# sites in the
barium titanate structure of Fig. 10 do not have a cubic environment. However, the Na" and Cl#

sites in the NaCl structure and the Cs" and Cl# sites in the CsCl structure have cubic symmetry.
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whence  Edipole = 0.

The local field at an atom is the sum of the electric field E0 from external 
sources and of the field from the dipoles within the specimen. It is 
convenient to decompose the dipole field so that part of the summa/on 
over dipoles may be replaced by integra/on. Then,

LOCAL ELECTRIC FIELD AT AN ATOM

The value of the local electric field that acts at the site of an atom is signif-
icantly different from the value of the macroscopic electric field. We can con-
vince ourselves of this by consideration of the local field at a site with a cubic
arrangement of neighbors5 in a crystal of spherical shape. The macroscopic
electric field in a sphere is

(CGS) (12)

(SI)

by (10).
But consider the field that acts on the atom at the center of the sphere

(this atom is not unrepresentative). If all dipoles are parallel to the z axis and
have magnitude p, the z component of the field at the center due to all other
dipoles is, from (2),

(CGS) (13)

In SI we replace p by p/4!"0. The x, y, z directions are equivalent because of
the symmetry of the lattice and of the sphere; thus

whence Edipole ! 0.
The correct local field is just equal to the applied field, Elocal ! E0, for an

atom site with a cubic environment in a spherical specimen. Thus the local
field is not the same as the macroscopic average field E.

We now develop an expression for the local field at a general lattice site,
not necessarily of cubic symmetry. The local field at an atom is the sum of the
electric field E0 from external sources and of the field from the dipoles within
the specimen. It is convenient to decompose the dipole field so that part of the
summation over dipoles may be replaced by integration.

We write

(14)Elocal ! E0 " E1 " E2 " E3� .

! 
i

z2
i

r5
i
 ! ! 

i

x2
i

r5
i
 ! ! 

i

y2
i

r5
i
� ,

Edipole ! p ! 
i

3z2
i  # ri

2
 

r 

5
i

  ! p ! 
i

2z2
i  # x2

i  # y2
i

r 

5
i

� .

E ! E0 " E1 ! E0 # 1
3"0

 P� ,

E ! E0 " E1 ! E0 # 4!
3  P� ;

460

5Atom sites in a cubic crystal do not necessarily have cubic symmetry: thus the O2# sites in the
barium titanate structure of Fig. 10 do not have a cubic environment. However, the Na" and Cl#

sites in the NaCl structure and the Cs" and Cl# sites in the CsCl structure have cubic symmetry.
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E0 = field produced by fixed charges external to the body;
E1 = depolariza/on field, from a surface charge density nˆ･P on the outer 

surface of the specimen;
E2 = Lorentz cavity field: field from polariza/on charges on inside of a 

spherical cavity cut (as a mathema/cal fic/on) out of the specimen with 
the reference atom as center; E1 + E2 is the field due to uniform 
polariza/on of the body in which a hole has been created; 

E3 = field of atoms inside cavity. 

The contribu/on E1 + E2 + E3 to the local field is the total field at one atom 
caused by the dipole moments of all the other atoms in the specimen. 

Here
E0 ! field produced by fixed charges external to the body;
E1 ! depolarization field, from a surface charge density " P on the outer

surface of the specimen;
E2 ! Lorentz cavity field: field from polarization charges on inside of a

spherical cavity cut (as a mathematical fiction) out of the specimen with the
reference atom as center, as in Fig. 6; E1 # E2 is the field due to uniform po-
larization of the body in which a hole has been created;

E3 ! field of atoms inside cavity.
The contribution E1 # E2 # E3 to the local field is the total field at one

atom caused by the dipole moments of all the other atoms in the specimen:

(CGS) (15)

and in SI we replace pi by pi/4!"0.
Dipoles at distances greater than perhaps ten lattice constants from the

reference site make a smoothly varying contribution to this sum, a contribu-
tion which may be replaced by two surface integrals. One surface integral is
taken over the outer surface of the ellipsoidal specimen and defines E1, as in
Eq. (6). The second surface integral defines E2 and may be taken over 
any interior surface that is a suitable distance (say 50 Å) from the reference
site. We count in E3 any dipoles not included in the volume bounded by 
the inner and outer surfaces. It is convenient to let the interior surface be
spherical.

E1 # E2 # E3 ! !
i

3(pi !   

ri)ri $ r2
i pi

r5
i

� ,

n̂
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E1 from
outer

boundary

E2 from
surface of
spherical

cavity

E3 from dipoles
inside sphere

Figure 6  The internal electric field on an atom in a crystal is the sum of the external applied field
E0 and of the field due to the other atoms in the crystal. The standard method of summing the di-
pole fields of the other atoms is first to sum individually over a moderate number of neighboring
atoms inside an imaginary sphere concentric with the reference atom: this defines the field E3,
which vanishes at a reference site with cubic symmetry. The atoms outside the sphere can be
treated as a uniformly polarized dielectric. Their contribution to the field at the reference point is
E1 # E2, where E1 is the depolarization field associated with the outer boundary and E2 is the
field associated with the surface of the spherical cavity.
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LOCAL ELECTRIC FIELD AT AN ATOM

The value of the local electric field that acts at the site of an atom is signif-
icantly different from the value of the macroscopic electric field. We can con-
vince ourselves of this by consideration of the local field at a site with a cubic
arrangement of neighbors5 in a crystal of spherical shape. The macroscopic
electric field in a sphere is

(CGS) (12)

(SI)

by (10).
But consider the field that acts on the atom at the center of the sphere

(this atom is not unrepresentative). If all dipoles are parallel to the z axis and
have magnitude p, the z component of the field at the center due to all other
dipoles is, from (2),

(CGS) (13)

In SI we replace p by p/4!"0. The x, y, z directions are equivalent because of
the symmetry of the lattice and of the sphere; thus

whence Edipole ! 0.
The correct local field is just equal to the applied field, Elocal ! E0, for an

atom site with a cubic environment in a spherical specimen. Thus the local
field is not the same as the macroscopic average field E.

We now develop an expression for the local field at a general lattice site,
not necessarily of cubic symmetry. The local field at an atom is the sum of the
electric field E0 from external sources and of the field from the dipoles within
the specimen. It is convenient to decompose the dipole field so that part of the
summation over dipoles may be replaced by integration.

We write

(14)Elocal ! E0 " E1 " E2 " E3� .
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5Atom sites in a cubic crystal do not necessarily have cubic symmetry: thus the O2# sites in the
barium titanate structure of Fig. 10 do not have a cubic environment. However, the Na" and Cl#

sites in the NaCl structure and the Cs" and Cl# sites in the CsCl structure have cubic symmetry.
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Here
E0 ! field produced by fixed charges external to the body;
E1 ! depolarization field, from a surface charge density " P on the outer

surface of the specimen;
E2 ! Lorentz cavity field: field from polarization charges on inside of a

spherical cavity cut (as a mathematical fiction) out of the specimen with the
reference atom as center, as in Fig. 6; E1 # E2 is the field due to uniform po-
larization of the body in which a hole has been created;

E3 ! field of atoms inside cavity.
The contribution E1 # E2 # E3 to the local field is the total field at one

atom caused by the dipole moments of all the other atoms in the specimen:

(CGS) (15)

and in SI we replace pi by pi/4!"0.
Dipoles at distances greater than perhaps ten lattice constants from the

reference site make a smoothly varying contribution to this sum, a contribu-
tion which may be replaced by two surface integrals. One surface integral is
taken over the outer surface of the ellipsoidal specimen and defines E1, as in
Eq. (6). The second surface integral defines E2 and may be taken over 
any interior surface that is a suitable distance (say 50 Å) from the reference
site. We count in E3 any dipoles not included in the volume bounded by 
the inner and outer surfaces. It is convenient to let the interior surface be
spherical.

E1 # E2 # E3 ! !
i

3(pi !   

ri)ri $ r2
i pi

r5
i

� ,

n̂
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E1 from
outer

boundary

E2 from
surface of
spherical

cavity

E3 from dipoles
inside sphere

Figure 6  The internal electric field on an atom in a crystal is the sum of the external applied field
E0 and of the field due to the other atoms in the crystal. The standard method of summing the di-
pole fields of the other atoms is first to sum individually over a moderate number of neighboring
atoms inside an imaginary sphere concentric with the reference atom: this defines the field E3,
which vanishes at a reference site with cubic symmetry. The atoms outside the sphere can be
treated as a uniformly polarized dielectric. Their contribution to the field at the reference point is
E1 # E2, where E1 is the depolarization field associated with the outer boundary and E2 is the
field associated with the surface of the spherical cavity.
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Lorentz Cavity Field
The field E2 due to the polariza/on charges on the surface of the fic//ous 
cavity was calculated by Lorentz. If 𝜃 is the polar angle referred to the 
polariza/on direc/on, the surface charge density on the surface of the 
cavity is −P cos𝜃. The electric field at the center of the spherical cavity of 
radius a is 

Lorentz Field, E2

The field E2 due to the polarization charges on the surface of the fictitious
cavity was calculated by Lorentz. If ! is the polar angle (Fig. 7) referred to the
polarization direction, the surface charge density on the surface of the cavity is
!P cos !. The electric field at the center of the spherical cavity of radius a is

(CGS) (16)

(SI)

This is the negative of the depolarization field E1 in a polarized sphere, so that
E1 " E2 # 0 for a sphere.

Field of Dipoles Inside Cavity, E3

The field E3 due to the dipoles within the spherical cavity is the only term
that depends on the crystal structure. We showed for a reference site with
cubic surroundings in a sphere that E3 # 0 if all the atoms may be replaced by
point dipoles parallel to each other. The total local field at a cubic site is, from
(14) and (16),

(CGS) (17)

(SI)

This is the Lorentz relation: the field acting at an atom in a cubic site is the
macroscopic field E of Eq. (7) plus 4"P/3 or P/3#0 from the polarization of the
other atoms in the specimen. Experimental data for cubic ionic crystals sup-
port the Lorentz relation.

Elocal # E " 1
3#0

 P� .

Elocal # E0 " E1 " 

4"
3  P # E " 

4"
3  P� ;

E2 # 1
3#0

 P� .

E2 # !"

0
(a! 2)(2"a  sin  !)(a d!)(P  cos  !)( cos  !) # 

4"
3 P� ;
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a sin !

Charge on ring =
2" a sin ! • a d! • P cos !

a d!

P

– – –
––

–
– –

+ +
++

+ +++

!
a

Figure 7  Calculation of the field in a spherical cavity in
a uniformly polarized medium.
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The field E3 due to the dipoles within the 
spherical cavity is the only term that depends 
on the crystal structure. For a reference site 
with cubic surroundings in a sphere that E3 = 0 
if all the atoms may be replaced by point 
dipoles parallel to each other. The total local 
field at a cubic site is, 

Lorentz Field, E2

The field E2 due to the polarization charges on the surface of the fictitious
cavity was calculated by Lorentz. If ! is the polar angle (Fig. 7) referred to the
polarization direction, the surface charge density on the surface of the cavity is
!P cos !. The electric field at the center of the spherical cavity of radius a is

(CGS) (16)

(SI)

This is the negative of the depolarization field E1 in a polarized sphere, so that
E1 " E2 # 0 for a sphere.

Field of Dipoles Inside Cavity, E3

The field E3 due to the dipoles within the spherical cavity is the only term
that depends on the crystal structure. We showed for a reference site with
cubic surroundings in a sphere that E3 # 0 if all the atoms may be replaced by
point dipoles parallel to each other. The total local field at a cubic site is, from
(14) and (16),

(CGS) (17)

(SI)

This is the Lorentz relation: the field acting at an atom in a cubic site is the
macroscopic field E of Eq. (7) plus 4"P/3 or P/3#0 from the polarization of the
other atoms in the specimen. Experimental data for cubic ionic crystals sup-
port the Lorentz relation.
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Figure 7  Calculation of the field in a spherical cavity in
a uniformly polarized medium.
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This is the Lorentz rela5on: the field ac/ng at an atom in a cubic site is the 
macroscopic field E plus 4𝜋P/3 from the polariza/on of the other atoms in 
the specimen. 

Charge on ring =
2𝜋asin𝜃･ad𝜃･Pcos𝜃



Dielectric Constant and Polarizability
The dielectric constant ϵ of an isotropic or cubic medium relative to vacuum is 
defined in terms of the macroscopic field E: 

DIELECTRIC CONSTANT AND POLARIZABILITY

The dielectric constant ! of an isotropic or cubic medium relative to vac-
uum is defined in terms of the macroscopic field E:

(CGS) (18)

(SI)

Remember that "SI ! 4#"CGS, by definition, but !SI ! !CGS.
The susceptibility (9) is related to the dielectric constant by

(CGS) ` (19)

In a noncubic crystal the dielectric response is described by the components
of the susceptibility tensor or of the dielectric constant tensor:

(CGS) (20)

(SI)

The polarizability $ of an atom is defined in terms of the local electric
field at the atom:

(21)

where p is the dipole moment. This definition applies in CGS and in SI, but
$SI ! 4#!0$CGS. The polarizability is an atomic property, but the dielectric
constant will depend on the manner in which the atoms are assembled to form
a crystal. For a nonspherical atom $ will be a tensor.

The polarization of a crystal may be expressed approximately as the prod-
uct of the polarizabilities of the atoms times the local electric field:

(22)

where Nj is the concentration and $j the polarizability of atoms j, and Eloc( j) is
the local field at atom sites j.

We want to relate the dielectric constant to the polarizabilities; the result
will depend on the relation that holds between the macroscopic electric field
and the local electric field. We give the derivation in CGS units and state the
result in both systems of units.
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DIELECTRIC CONSTANT AND POLARIZABILITY

The dielectric constant ! of an isotropic or cubic medium relative to vac-
uum is defined in terms of the macroscopic field E:
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$SI ! 4#!0$CGS. The polarizability is an atomic property, but the dielectric
constant will depend on the manner in which the atoms are assembled to form
a crystal. For a nonspherical atom $ will be a tensor.
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uct of the polarizabilities of the atoms times the local electric field:

(22)

where Nj is the concentration and $j the polarizability of atoms j, and Eloc( j) is
the local field at atom sites j.

We want to relate the dielectric constant to the polarizabilities; the result
will depend on the relation that holds between the macroscopic electric field
and the local electric field. We give the derivation in CGS units and state the
result in both systems of units.

P ! !
j

 Njpj ! ! 
j

Nj$jEloc( j)� ,

p ! $Elocal� ,

P% ! "%& !0E&� ; � !%& ! '%& " "%&� .

P% ! "%&E&� ; � !%& ! '%& " 4#"%&� .

(SI)� " ! P
!0E

 ! ! # 1� ."�! PE ! ! # 1
4#

� ;

! ! 
!0 E " P

!0 E
 ! 1 " "� .

! ! E " 4#P
E  ! 1 " 4#"� ;

16  Dielectrics and Ferroelectrics 463

DI���RYE����������������1.��1BHF����

and

The polarizability α of an atom is defined in terms of the local electric field at 
the atom: , where p is the dipole moment. The polarizability is an 
atomic property, but the dielectric constant will depend on the manner in 
which the atoms are assembled to form a crystal. The rela/on of the dielectric 
constant to the polarizabili/es depends on the rela/on between the 
macroscopic electric field and the local electric field. If the local field is given 
by the Lorentz rela/on, then the polariza/on of a crystal may be expressed 
approximately as 

DIELECTRIC CONSTANT AND POLARIZABILITY

The dielectric constant ! of an isotropic or cubic medium relative to vac-
uum is defined in terms of the macroscopic field E:
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The susceptibility (9) is related to the dielectric constant by

(CGS) ` (19)

In a noncubic crystal the dielectric response is described by the components
of the susceptibility tensor or of the dielectric constant tensor:

(CGS) (20)

(SI)

The polarizability $ of an atom is defined in terms of the local electric
field at the atom:

(21)

where p is the dipole moment. This definition applies in CGS and in SI, but
$SI ! 4#!0$CGS. The polarizability is an atomic property, but the dielectric
constant will depend on the manner in which the atoms are assembled to form
a crystal. For a nonspherical atom $ will be a tensor.

The polarization of a crystal may be expressed approximately as the prod-
uct of the polarizabilities of the atoms times the local electric field:

(22)

where Nj is the concentration and $j the polarizability of atoms j, and Eloc( j) is
the local field at atom sites j.

We want to relate the dielectric constant to the polarizabilities; the result
will depend on the relation that holds between the macroscopic electric field
and the local electric field. We give the derivation in CGS units and state the
result in both systems of units.
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If the local field is given by the Lorentz relation (17), then

(CGS)

and we solve for P to find the susceptibility

(CGS)
(23)

By definition ! ! 1 " 4"# in CGS; we may rearrange (23) to obtain

(CGS) (24)

the Clausius-Mossotti relation. This relates the dielectric constant to the
electronic polarizability, but only for crystal structures for which the Lorentz
local field (17) obtains.

Electronic Polarizability

The total polarizability may usually be separated into three parts: elec-
tronic, ionic, and dipolar, as in Fig. 8. The electronic contribution arises from
the displacement of the electron shell relative to a nucleus. The ionic contri-
bution comes from the displacement of a charged ion with respect to other
ions. The dipolar polarizability arises from molecules with a permanent elec-
tric dipole moment that can change orientation in an applied electric field.
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Figure 8  Frequency dependence of the several contributions to the polarizability.
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If the local field is given by the Lorentz relation (17), then
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,   and

where Nj is the concentra/on and αj the polarizability of atoms j. 

If the local field is given by the Lorentz relation (17), then

(CGS)

and we solve for P to find the susceptibility

(CGS)
(23)

By definition ! ! 1 " 4"# in CGS; we may rearrange (23) to obtain

(CGS) (24)

the Clausius-Mossotti relation. This relates the dielectric constant to the
electronic polarizability, but only for crystal structures for which the Lorentz
local field (17) obtains.
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If the local field is given by the Lorentz relation (17), then

(CGS)

and we solve for P to find the susceptibility

(CGS)
(23)

By definition ! ! 1 " 4"# in CGS; we may rearrange (23) to obtain

(CGS) (24)

the Clausius-Mossotti relation. This relates the dielectric constant to the
electronic polarizability, but only for crystal structures for which the Lorentz
local field (17) obtains.

Electronic Polarizability

The total polarizability may usually be separated into three parts: elec-
tronic, ionic, and dipolar, as in Fig. 8. The electronic contribution arises from
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≡  Clausius-MossoH rela5on. 



Electronic Polarizability 
The total polarizability may usually be separated into three parts: electronic, 
ionic, and dipolar. The electronic contribu/on arises from the displacement 
of the electron shell rela/ve to a nucleus. The ionic contribu/on comes from 
the displacement of a charged ion with respect to other ions. The dipolar 
polarizability arises from molecules with a permanent electric dipole 
moment that can change orienta/on in an applied electric field. 

If the local field is given by the Lorentz relation (17), then

(CGS)

and we solve for P to find the susceptibility
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By definition ! ! 1 " 4"# in CGS; we may rearrange (23) to obtain
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the Clausius-Mossotti relation. This relates the dielectric constant to the
electronic polarizability, but only for crystal structures for which the Lorentz
local field (17) obtains.

Electronic Polarizability

The total polarizability may usually be separated into three parts: elec-
tronic, ionic, and dipolar, as in Fig. 8. The electronic contribution arises from
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The le_ figure shows the frequency-
dependent polarizability. The dielectric 
constant (ϵ) at op/cal frequencies 
arises almost en/rely from the 
electronic polarizability. The dipolar 
and ionic contribu/ons are small at 
high frequencies because of the iner/a 
of the molecules and ions. In the 
op/cal range, by ϵ = n2, we obtain the 
refrac/ve index n

In heterogeneous materials there is usually also an interfacial polarization
arising from the accumulation of charge at structural interfaces. This is of little
fundamental interest, but it is of considerable practical interest because com-
mercial insulating materials are usually heterogeneous.6

The dielectric constant at optical frequencies arises almost entirely from
the electronic polarizability. The dipolar and ionic contributions are small at
high frequencies because of the inertia of the molecules and ions. In the opti-
cal range (24) reduces to

(CGS) (25)

here we have used the relation n2 ! !, where n is the refractive index.
By applying (25) to large numbers of crystals we determine in Table 1 em-

pirical values of the electronic polarizabilities that are reasonably consistent
with the observed values of the refractive index. The scheme is not entirely
self-consistent, because the electronic polarizability of an ion depends 
somewhat on the environment in which it is placed. The negative ions are
highly polarizable because they are large.

n2
 " 1

n2
 # 2

 ! 

4"
3  !Nj#j(electronic)� ;
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6For references see D. E. Aspnes, Am. J. Phys. 50, 704 (1982).

Table 1  Electronic polarizabilities of atoms and ions, in 10"24 cm3

He Li# Be2# B3# C4#

Pauling 0.201 0.029 0.008 0.003 0.0013
JS 0.029

O2" F" Ne Na# Mg2# Al3# Si4#

Pauling 3.88 1.04 0.390 0.179 0.094 0.052 0.0165
JS-(TKS) (2.4) 0.858 0.290

S2" Cl" Ar K# Ca2# Se3# Ti4#

Pauling 10.2 3.66 1.62 0.83 0.47 0.286 0.185
JS-(TKS) (5.5) 2.947 1.133 (1.1) (0.19)

Se2" Br" Kr Rb# Sr2# Y3# Zr4#

Pauling 10.5 4.77 2.46 1.40 0.86 0.55 0.37
JS-(TKS) (7.) 4.091 1.679 (1.6)

Te2" I" Xe Cs# Ba2# La3# Ce4#

Pauling 14.0 7.10 3.99 2.42 1.55 1.04 0.73
JS-(TKS) (9.) 6.116 2.743 (2.5)

Values from L. Pauling, Proc. R. Soc. London A114, 181 (1927); S. S. Jaswal and T. P.
Sharma, J. Phys. Chem. Solids 34, 509 (1973); and J. Tessman, A. Kahn, and W. Shockley, Phys.
Rev. 92, 890 (1953). The TKS polarizabilities are at the frequency of the D lines of sodium. The
values are in CGS; to convert to SI, multiply by 9 $ 10"15.
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An electron bound harmonically to an atom will show resonance absorp/on 
at a frequency ω0 = (β/m)1/2, where β is the force constant. The mo/on of the 
electron in the local electric field Eloc sin(ωt) is 

Classical Theory of Electronic Polarizability. An electron bound har-
monically to an atom will show resonance absorption at a frequency !0 !
("/m)1/2, where " is the force constant. The displacement x of the electron 
occasioned by the application of a field Eloc is given by

(26)

so that the static electronic polarizability is

(27)

The electronic polarizability will depend on frequency, and it is shown in
the following example that for frequency !

(CGS) (28)

but in the visible region the frequency dependence (dispersion) is not usually
very important in most transparent materials.

EXAMPLE: Frequency dependence. Find the frequency dependence of the elec-
tronic polarizability of an electron having the resonance frequency !0, treating the sys-
tem as a simple harmonic oscillator.

The equation of motion in the local electric field Eloc sin !t is

so that, for x ! x0 sin !t,

The dipole moment has the amplitude

from which (28) follows.

In quantum theory the expression corresponding to (28) is

(CGS) (29)

where fij is called the oscillator strength of the electric dipole transition be-
tween the atomic states i and j. Near a transition the polarizability changes
sign (Fig. 8).
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Classical Theory of Electronic Polarizability. An electron bound har-
monically to an atom will show resonance absorption at a frequency !0 !
("/m)1/2, where " is the force constant. The displacement x of the electron 
occasioned by the application of a field Eloc is given by

(26)

so that the static electronic polarizability is

(27)

The electronic polarizability will depend on frequency, and it is shown in
the following example that for frequency !

(CGS) (28)

but in the visible region the frequency dependence (dispersion) is not usually
very important in most transparent materials.

EXAMPLE: Frequency dependence. Find the frequency dependence of the elec-
tronic polarizability of an electron having the resonance frequency !0, treating the sys-
tem as a simple harmonic oscillator.

The equation of motion in the local electric field Eloc sin !t is

so that, for x ! x0 sin !t,

The dipole moment has the amplitude

from which (28) follows.

In quantum theory the expression corresponding to (28) is

(CGS) (29)

where fij is called the oscillator strength of the electric dipole transition be-
tween the atomic states i and j. Near a transition the polarizability changes
sign (Fig. 8).
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Let                             we obtain

Classical Theory of Electronic Polarizability. An electron bound har-
monically to an atom will show resonance absorption at a frequency !0 !
("/m)1/2, where " is the force constant. The displacement x of the electron 
occasioned by the application of a field Eloc is given by

(26)

so that the static electronic polarizability is

(27)

The electronic polarizability will depend on frequency, and it is shown in
the following example that for frequency !

(CGS) (28)

but in the visible region the frequency dependence (dispersion) is not usually
very important in most transparent materials.

EXAMPLE: Frequency dependence. Find the frequency dependence of the elec-
tronic polarizability of an electron having the resonance frequency !0, treating the sys-
tem as a simple harmonic oscillator.

The equation of motion in the local electric field Eloc sin !t is

so that, for x ! x0 sin !t,

The dipole moment has the amplitude

from which (28) follows.

In quantum theory the expression corresponding to (28) is

(CGS) (29)

where fij is called the oscillator strength of the electric dipole transition be-
tween the atomic states i and j. Near a transition the polarizability changes
sign (Fig. 8).
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The dipole moment has the amplitude: 

Classical Theory of Electronic Polarizability. An electron bound har-
monically to an atom will show resonance absorption at a frequency !0 !
("/m)1/2, where " is the force constant. The displacement x of the electron 
occasioned by the application of a field Eloc is given by

(26)

so that the static electronic polarizability is

(27)

The electronic polarizability will depend on frequency, and it is shown in
the following example that for frequency !

(CGS) (28)

but in the visible region the frequency dependence (dispersion) is not usually
very important in most transparent materials.

EXAMPLE: Frequency dependence. Find the frequency dependence of the elec-
tronic polarizability of an electron having the resonance frequency !0, treating the sys-
tem as a simple harmonic oscillator.

The equation of motion in the local electric field Eloc sin !t is

so that, for x ! x0 sin !t,

The dipole moment has the amplitude

from which (28) follows.

In quantum theory the expression corresponding to (28) is

(CGS) (29)

where fij is called the oscillator strength of the electric dipole transition be-
tween the atomic states i and j. Near a transition the polarizability changes
sign (Fig. 8).
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Classical Theory of Electronic Polarizability. An electron bound har-
monically to an atom will show resonance absorption at a frequency !0 !
("/m)1/2, where " is the force constant. The displacement x of the electron 
occasioned by the application of a field Eloc is given by

(26)

so that the static electronic polarizability is

(27)

The electronic polarizability will depend on frequency, and it is shown in
the following example that for frequency !

(CGS) (28)

but in the visible region the frequency dependence (dispersion) is not usually
very important in most transparent materials.

EXAMPLE: Frequency dependence. Find the frequency dependence of the elec-
tronic polarizability of an electron having the resonance frequency !0, treating the sys-
tem as a simple harmonic oscillator.

The equation of motion in the local electric field Eloc sin !t is

so that, for x ! x0 sin !t,

The dipole moment has the amplitude

from which (28) follows.

In quantum theory the expression corresponding to (28) is

(CGS) (29)

where fij is called the oscillator strength of the electric dipole transition be-
tween the atomic states i and j. Near a transition the polarizability changes
sign (Fig. 8).
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In heterogeneous materials there is usually also an interfacial polarization
arising from the accumulation of charge at structural interfaces. This is of little
fundamental interest, but it is of considerable practical interest because com-
mercial insulating materials are usually heterogeneous.6

The dielectric constant at optical frequencies arises almost entirely from
the electronic polarizability. The dipolar and ionic contributions are small at
high frequencies because of the inertia of the molecules and ions. In the opti-
cal range (24) reduces to

(CGS) (25)

here we have used the relation n2 ! !, where n is the refractive index.
By applying (25) to large numbers of crystals we determine in Table 1 em-

pirical values of the electronic polarizabilities that are reasonably consistent
with the observed values of the refractive index. The scheme is not entirely
self-consistent, because the electronic polarizability of an ion depends 
somewhat on the environment in which it is placed. The negative ions are
highly polarizable because they are large.

n2
 " 1

n2
 # 2

 ! 

4"
3  !Nj#j(electronic)� ;
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6For references see D. E. Aspnes, Am. J. Phys. 50, 704 (1982).

Table 1  Electronic polarizabilities of atoms and ions, in 10"24 cm3

He Li# Be2# B3# C4#

Pauling 0.201 0.029 0.008 0.003 0.0013
JS 0.029

O2" F" Ne Na# Mg2# Al3# Si4#

Pauling 3.88 1.04 0.390 0.179 0.094 0.052 0.0165
JS-(TKS) (2.4) 0.858 0.290

S2" Cl" Ar K# Ca2# Se3# Ti4#

Pauling 10.2 3.66 1.62 0.83 0.47 0.286 0.185
JS-(TKS) (5.5) 2.947 1.133 (1.1) (0.19)

Se2" Br" Kr Rb# Sr2# Y3# Zr4#

Pauling 10.5 4.77 2.46 1.40 0.86 0.55 0.37
JS-(TKS) (7.) 4.091 1.679 (1.6)

Te2" I" Xe Cs# Ba2# La3# Ce4#

Pauling 14.0 7.10 3.99 2.42 1.55 1.04 0.73
JS-(TKS) (9.) 6.116 2.743 (2.5)

Values from L. Pauling, Proc. R. Soc. London A114, 181 (1927); S. S. Jaswal and T. P.
Sharma, J. Phys. Chem. Solids 34, 509 (1973); and J. Tessman, A. Kahn, and W. Shockley, Phys.
Rev. 92, 890 (1953). The TKS polarizabilities are at the frequency of the D lines of sodium. The
values are in CGS; to convert to SI, multiply by 9 $ 10"15.
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Electronic polarizabili/es α of atoms and ions, in 10−24 cm3 



Three Dielectric Phases



Phase Transition

• A phase is a physically dis-nct, chemically homogeneous 
and mechanically separable state.

• Change of states of ma:er at specific combina-ons of 
temperature and pressure is called phase transi-on.

First order
Latent heat is involved

Polariza-on is discon-nuous

eg: water liquid-vapor transi-on
ferroelectric-paraelectric

Second order
No latent heat

Con-nuous varia-on of polariza-on

eg: normal-superconduc-ng state
Ferromagne-c-paramagne-c



Structural Phase Transitions

It is not uncommon for crystals to transform from one crystal structure to 
another as the temperature or pressure is varied. The stable structure at a 
temperature T is determined by the minimum of the free energy F = U − TS. 
There will be a transi/on from A to B if a temperature Tc exists such that 
FA(Tc) > FB(Tc). This is because the structure B may have a so_er or lower 
frequency phonon spectrum than A. As the temperature is increased more 
phonons in B will be excited than the phonons in A. Because the entropy 
increases with the occupancy, the entropy of B will become higher than the 
entropy of A as the temperature is increased. 
For a stable structure A at absolute zero, it generally has the lowest 
accessible internal energy of all the possible structures. Even this selec/on 
of a structure A can be varied with applica/on of pressure, because a low 
atomic volume will favor closest-packed or even metallic structures. 
Hydrogen and xenon, for example, become metallic under extreme pressure. 



Ferroelectric Crystals
A ferroelectric crystal exhibits an 
electric dipole moment even in the 
absence of an external electric field. In 
this state the center of posi/ve charge 
of the crystal does not coincide with 
the center of nega/ve charge. The plot 
of polariza/on versus electric field for 
the ferroelectric state shows a 
hysteresis loop. 

there is usually a rapid drop in the dielectric constant as the temperature 
increases.

In some crystals the ferroelectric dipole moment is not changed by an
electric field of the maximum intensity which it is possible to apply before
causing electrical breakdown. In these crystals we are often able to observe a
change in the spontaneous moment when the temperature is changed (Fig. 9).
Such crystals are called pyroelectric. Lithium niobate, LiNbO3, is pyroelec-
tric at room temperature. It has a high transition temperature (Tc ! 1480 K)
and a high saturation polarization (50 !C/cm2). It can be “poled,” which
means given a remanent polarization, by an electric field applied over 1400 K.

Classification of Ferroelectric Crystals

We list in Table 2 some of the crystals commonly considered to be ferroelec-
tric, along with the transition temperature or Curie point Tc at which the crystal
changes from the low-temperature polarized state to the high-temperature 
unpolarized state. Thermal motion tends to destroy the ferroelectric order.
Some ferroelectric crystals have no Curie point because they melt before leaving
the ferroelectric phase. The table also includes values of the spontaneous polar-
ization Ps. Ferroelectric crystals may be classified into two main groups, order-
disorder or displacive.

One may define the character of the transition in terms of the dynamics of
the lowest frequency (“soft”) optical phonon modes. If a soft mode can propa-
gate in the crystal at the transition, then the transition is displacive. If the soft
mode is only diffusive (non-propagating) there is really not a phonon at all, 

16  Dielectrics and Ferroelectrics 469

Table 2  Ferroelectric crystals

To obtain the spontaneous polarization Ps in the CGS unit of esu cm"2, multiply the
value given in !C cm"2 by 3 # 103.

Tc, in K Ps, in !C cm"2, at T K

KDP type KH2PO4 123 4.75 [96]
KD2PO4 213 4.83 [180]
RbH2PO4 147 5.6 [90]
KH2AsO4 97 5.0 [78]
GeTe 670 — —

TGS type Tri-glycine sulfate 322 2.8 [29]
Tri-glycine selenate 295 3.2 [283]

Perovskites BaTiO3 408 26.0 [296]
KNbO3 708 30.0 [523]
PbTiO3 765 $50 [296]
LiTaO3 938 50
LiNbO3 1480 71 [296]
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Above the transition temperature, ferroelectricity usually disappears and the 
crystal is in a paraelectric state. There is usually a rapid drop in the dielectric 
constant as the temperature increases. In some crystals the ferroelectric dipole 
moment is not changed by an electric field of the maximum intensity before 
electrical breakdown. Such crystals are called pyroelectric. Lithium niobate, 
LiNbO3, is pyroelectric at room temperature. It has a high transition 
temperature (Tc = 1480 K) and a high saturation polarization (50 μC/cm2). 



Ferroelectric crystals may be classified into two main groups by their structural 
transi/on, order-disorder or displacive. One may define the character of the 
transi/on in terms of the dynamics of the soQ op/cal phonon modes. If a so_ 
mode can propagate in the crystal at the transi/on, then the transi/on is 
displacive. If the so_ mode is only diffusive (non-propaga/ng) there is really not 
a phonon at all, but is only a large amplitude hopping mo/on between the wells 
of the order-disorder system. Many ferroelectrics have so_ modes that fall 
between these two extremes. The order-disorder class of ferroelectrics includes 
crystals with hydrogen bonds in which the mo/on of the protons is related to 
the ferroelectric proper/es, as in potassium dihydrogen phosphate (KH2PO4) and 
isomorphous salts. The subs/tu/on of deuterons for protons nearly doubles Tc, 
although the frac/onal change in the molecular weight of the compound is less 
than 2 percent: 

Character of Transi@on

but is only a large amplitude hopping motion between the wells of the order-
disorder system. Many ferroelectrics have soft modes that fall between these
two extremes.

The order-disorder class of ferroelectrics includes crystals with hydrogen
bonds in which the motion of the protons is related to the ferroelectric 
properties, as in potassium dihydrogen phosphate (KH2PO4) and isomorphous
salts. The substitution of deuterons for protons nearly doubles Tc, although the
fractional change in the molecular weight of the compound is less than 2 
percent:

KH2PO4 KD2PO4 KH2AsO4 KD2AsO4
Curie temperature 123 K 213 K 97 K 162 K

This extraordinarily large isotope shift is believed to be a quantum effect in-
volving the mass-dependence of the de Broglie wavelength. Neutron diffraction
data show that above the Curie temperature the proton distribution along the
hydrogen bond is symmetrically elongated. Below the Curie temperature the
distribution is more concentrated and asymmetric with respect to neighboring
ions, so that one end of the hydrogen bond is preferred by the proton over the
other end, giving a polarization.

The displacive class of ferroelectrics includes ionic crystal structures
closely related to the perovskite and ilmenite structures. The simplest ferro-
electric crystal is GeTe with the sodium chloride structure. We shall devote
ourselves primarily to crystals with the perovskite structure, Fig. 10.

Consider the order of magnitude of the ferroelectric effects in barium 
titanate: the observed saturation polarization Ps at room temperature (Fig. 11)
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(a) (b)

Ba2+

Ti4+
Ti4+

Ba2+

O2–

Figure 10  (a) The crystal structure of barium titanate. The prototype crystal is calcium titanate
(perovskite). The structure is cubic, with Ba2! ions at the cube corners, O2" ions at the face cen-
ters, and a Ti4! ion at the body center. (b) Below the Curie temperature the structure is slightly
deformed, with Ba2! and Ti4! ions displaced relative to the O2" ions, thereby developing a dipole
moment. The upper and lower oxygen ions may move downward slightly.
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Neutron diffrac/on data show that above the Curie temperature the proton 
distribu/on along the hydrogen bond is symmetrically elongated. Below the 
Curie temperature the distribu/on is more concentrated and asymmetric with 
respect to neighboring ions, giving a polariza/on. 



The displacive class of ferroelectrics includes ionic crystal structures closely 
related to the perovskite and ilmenite structures. The general chemical formula 
for perovskite compounds is ABX3, where 'A' and 'B' are two ions, often of very 
different sizes, and X is anion (frequently oxide) that bonds to both ions. The 'A' 
atoms are generally larger than the 'B' atoms. The ideal cubic structure has the 
B cation in 6-fold coordination, surrounded by an octahedron of anions, and the 
A cation in 12-fold cuboctahedral coordination. The perovskite structure of 
barium titanate (BaTiO3) is slightly deformed below the Curie temperature, with 
Ba2

+ and Ti4+ ions displaced relative to the O2
− ions, thereby developing a dipole 

moment. The upper and lower oxygen ions may move downward slightly. 

but is only a large amplitude hopping motion between the wells of the order-
disorder system. Many ferroelectrics have soft modes that fall between these
two extremes.

The order-disorder class of ferroelectrics includes crystals with hydrogen
bonds in which the motion of the protons is related to the ferroelectric 
properties, as in potassium dihydrogen phosphate (KH2PO4) and isomorphous
salts. The substitution of deuterons for protons nearly doubles Tc, although the
fractional change in the molecular weight of the compound is less than 2 
percent:

KH2PO4 KD2PO4 KH2AsO4 KD2AsO4
Curie temperature 123 K 213 K 97 K 162 K

This extraordinarily large isotope shift is believed to be a quantum effect in-
volving the mass-dependence of the de Broglie wavelength. Neutron diffraction
data show that above the Curie temperature the proton distribution along the
hydrogen bond is symmetrically elongated. Below the Curie temperature the
distribution is more concentrated and asymmetric with respect to neighboring
ions, so that one end of the hydrogen bond is preferred by the proton over the
other end, giving a polarization.

The displacive class of ferroelectrics includes ionic crystal structures
closely related to the perovskite and ilmenite structures. The simplest ferro-
electric crystal is GeTe with the sodium chloride structure. We shall devote
ourselves primarily to crystals with the perovskite structure, Fig. 10.

Consider the order of magnitude of the ferroelectric effects in barium 
titanate: the observed saturation polarization Ps at room temperature (Fig. 11)
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(a) (b)

Ba2+

Ti4+
Ti4+

Ba2+

O2–

Figure 10  (a) The crystal structure of barium titanate. The prototype crystal is calcium titanate
(perovskite). The structure is cubic, with Ba2! ions at the cube corners, O2" ions at the face cen-
ters, and a Ti4! ion at the body center. (b) Below the Curie temperature the structure is slightly
deformed, with Ba2! and Ti4! ions displaced relative to the O2" ions, thereby developing a dipole
moment. The upper and lower oxygen ions may move downward slightly.
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Perovskite Structure



is 8 ! 104 esu cm"2. The volume of a cell is (4 ! 10"8)3 # 64 ! 10"24 cm3, so
that the dipole moment of a cell is

(CGS)

(SI)

If the positive ions Ba2$ and Ti4$ were moved by ! # 0.1 Å with respect to the
negative O2" ions, the dipole moment of a cell would be 6e! 3 ! 10"18 esu
cm. In LiNbO3 the displacements are considerably larger, being 0.9 Å and 0.5 Å
for the lithium and niobum ions respectively, giving the larger Ps.

DISPLACIVE TRANSITIONS

Two viewpoints contribute to an understanding of a ferroelectric displacive
transition and by extension to displacive transitions in general. We may speak of
a polarization catastrophe in which for some critical condition the polarization
or some Fourier component of the polarization becomes very large. Equally, we
may speak of the condensation of a transverse optical phonon. Here the word
condensation is to be understood in the Bose-Einstein sense (TP, p. 199) of a
time-independent displacement of finite amplitude. This can occur when the
corresponding TO phonon frequency vanishes at some point in the Brillouin
zone. LO phonons always have higher frequencies than the TO phonons of the
same wavevector, so we are not concerned with LO phonon condensation.

!

p  ! (3 ! 10"1 C m" 2)(64 ! 10" 30 m3) ! 2 ! 10" 29 C m� .

p ! (8 ! 104 esu cm"2)(64 ! 10"24 cm"3) ! 5 ! 10"18 esu cm� ;
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Figure 11  Spontaneous polarization projected on cube edge of barium titanate, as a function of
temperature. (After W. J. Merz.)
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Spontaneous polariza/on projected on cube edge of barium /tanate as a 
func/on of temperature is displayed below. Es/mate the order of 
magnitude of the ferroelectric effects in barium /tanate: the observed 
satura/on polariza/on Ps at room temperature is 8×104 esu cm−2. The 
volume of a cell is 64×10−24 cm3, so that the dipole moment of a cell 
is                                                                                          .                                                                           
If the posi/ve ions Ba2

+ and Ti4+ were moved by 𝛿 = 0.1 Å with respect to 
the nega/ve O2

− ions, the dipole moment of a cell would be 6e𝛿 ≃ 3 × 10−18 

esu cm. 

is 8 ! 104 esu cm"2. The volume of a cell is (4 ! 10"8)3 # 64 ! 10"24 cm3, so
that the dipole moment of a cell is

(CGS)

(SI)

If the positive ions Ba2$ and Ti4$ were moved by ! # 0.1 Å with respect to the
negative O2" ions, the dipole moment of a cell would be 6e! 3 ! 10"18 esu
cm. In LiNbO3 the displacements are considerably larger, being 0.9 Å and 0.5 Å
for the lithium and niobum ions respectively, giving the larger Ps.

DISPLACIVE TRANSITIONS

Two viewpoints contribute to an understanding of a ferroelectric displacive
transition and by extension to displacive transitions in general. We may speak of
a polarization catastrophe in which for some critical condition the polarization
or some Fourier component of the polarization becomes very large. Equally, we
may speak of the condensation of a transverse optical phonon. Here the word
condensation is to be understood in the Bose-Einstein sense (TP, p. 199) of a
time-independent displacement of finite amplitude. This can occur when the
corresponding TO phonon frequency vanishes at some point in the Brillouin
zone. LO phonons always have higher frequencies than the TO phonons of the
same wavevector, so we are not concerned with LO phonon condensation.

!

p  ! (3 ! 10"1 C m" 2)(64 ! 10" 30 m3) ! 2 ! 10" 29 C m� .

p ! (8 ! 104 esu cm"2)(64 ! 10"24 cm"3) ! 5 ! 10"18 esu cm� ;
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Displacive Transi@on
Two viewpoints contribute to an understanding of a ferroelectric displacive 
transition. We may speak of a polarization catastrophe in which for some critical 
condition the polarization or some Fourier component of the polarization 
becomes very large. Equally, we may speak of the condensation of a transverse 
optical phonon. This can occur when the corresponding TO phonon frequency 
vanishes at some point in the Brillouin zone. LO phonons always have higher 
frequencies than the TO phonons of the same wavevector, so need not be 
concerned. 
The occurrence of ferroelectricity (and antiferroelectricity) in many perovskite-
structure crystals suggests that this structure is favorably disposed to a displacive 
transition. Local field calculations make clear the reason for the favored position 
of this structure: the O2

− ions do not have cubic surroundings, and the local field 
factors turn out to be unusually large. The dielectric constant can be rewritten in 
the form 

In a polarization catastrophe the local electric field caused by the ionic
displacement is larger than the elastic restoring force, thereby giving an asym-
metrical shift in the positions of the ions. Higher order restoring forces will
limit the shift to a finite displacement.

The occurrence of ferroelectricity (and antiferroelectricity) in many 
perovskite-structure crystals suggests that this structure is favorably disposed
to a displacive transition. Local field calculations make clear the reason for the
favored position of this structure: the O2! ions do not have cubic surround-
ings, and the local field factors turn out to be unusually large.

We give first the simple form of the catastrophe theory, supposing that the
local field at all atoms is equal to E " 4!P/3 in CGS or E " P/3"0 in SI. The 
theory given now leads to a second-order transition; the physical ideas can be car-
ried over to a first-order transition. In a second-order transition there is no latent
heat; the order parameter (in this instance, the polarization) is not discontinuous
at the transition temperature. In a first-order transition there is a latent heat; the
order parameter changes discontinuously at the transition temperature.

We rewrite (24) for the dielectric constant in the form

(CGS) (30)

where #i is the electronic plus ionic polarizability of an ion of type i and Ni is
the number of ions i per unit volume. The dielectric constant becomes infinite
and permits a finite polarization in zero applied field when

(CGS) (31)

This is the condition for a polarization catastrophe.
The value of " in (30) is sensitive to small departures of ! Ni#i from the

critical value 3/4!. If we write

(CGS) (32)

where s # 1, the dielectric constant in (30) becomes

(33)

Suppose near the critical temperature s varies linearly with temperature:

(34)

where $ is a constant. Such a variation of s or ! Ni#i might come from normal
thermal expansion of the lattice. The dielectric constant has the form

(35)

close to the observed temperature variation in the paraelectric state, Fig. 12.

"  !  

$
T ! Tc

� ,

s ! (T ! Tc)/$� ,

" ! 1/s� .

(4!/3)!Ni#i $ 1 ! 3s� ,

!Ni#i $ 3/4!� .

" $ 

1 " 

8!
3  ! Ni#i

1 ! 

4!
3  ! Ni#i

� ,
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where αi is the electronic plus ionic polarizability of 
an ion of type i and Ni is the number density of ions i.

When                         , this is the condi/on for a polariza5on catastrophe.

In a polarization catastrophe the local electric field caused by the ionic
displacement is larger than the elastic restoring force, thereby giving an asym-
metrical shift in the positions of the ions. Higher order restoring forces will
limit the shift to a finite displacement.

The occurrence of ferroelectricity (and antiferroelectricity) in many 
perovskite-structure crystals suggests that this structure is favorably disposed
to a displacive transition. Local field calculations make clear the reason for the
favored position of this structure: the O2! ions do not have cubic surround-
ings, and the local field factors turn out to be unusually large.

We give first the simple form of the catastrophe theory, supposing that the
local field at all atoms is equal to E " 4!P/3 in CGS or E " P/3"0 in SI. The 
theory given now leads to a second-order transition; the physical ideas can be car-
ried over to a first-order transition. In a second-order transition there is no latent
heat; the order parameter (in this instance, the polarization) is not discontinuous
at the transition temperature. In a first-order transition there is a latent heat; the
order parameter changes discontinuously at the transition temperature.

We rewrite (24) for the dielectric constant in the form

(CGS) (30)

where #i is the electronic plus ionic polarizability of an ion of type i and Ni is
the number of ions i per unit volume. The dielectric constant becomes infinite
and permits a finite polarization in zero applied field when

(CGS) (31)

This is the condition for a polarization catastrophe.
The value of " in (30) is sensitive to small departures of ! Ni#i from the

critical value 3/4!. If we write

(CGS) (32)

where s # 1, the dielectric constant in (30) becomes

(33)

Suppose near the critical temperature s varies linearly with temperature:

(34)

where $ is a constant. Such a variation of s or ! Ni#i might come from normal
thermal expansion of the lattice. The dielectric constant has the form

(35)

close to the observed temperature variation in the paraelectric state, Fig. 12.

"  !  

$
T ! Tc

� ,

s ! (T ! Tc)/$� ,

" ! 1/s� .

(4!/3)!Ni#i $ 1 ! 3s� ,

!Ni#i $ 3/4!� .

" $ 

1 " 

8!
3  ! Ni#i

1 ! 

4!
3  ! Ni#i

� ,
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Soft Optical Phonons

The Lyddane-Sachs-Teller relation (Chapter 14) is

(36)

The static dielectric constant increases when the transverse optical phonon fre-
quency decreases. When the static dielectric constant !(0) has a high value,
such as 100 to 10,000, we find that "T has a low value.

When "T ! 0 the crystal is unstable and !(0) is infinite because there is no
effective restoring force. The ferroelectric BaTiO3 at 24°C has a TO mode at
12 cm"1, a low frequency for an optical mode.

If the transition to a ferroelectric state is first order, we do not find "T ! 0
or !(0) ! ! at the transition. The LST relation suggests only that !(0) extrapo-
lates to a singularity at a temperature T0 below Tc.

The association of a high static dielectric constant with a low-frequency
optical mode is supported by experiments on strontium titanate, SrTiO3. 
According to the LST relation, if the reciprocal of the static dielectric constant
has a temperature dependence 1/!(0) " (T " T0), then the square of the 
optical mode frequency will have a similar temperature dependence: 
"2

T " (T " T0), if "L is independent of temperature. The result for "2
T is 

very well confirmed by Fig. 13. Measurements of "T versus T for another 
ferroelectric crystal, SbSI, are shown in Fig. 14.

"2
T/"2

L ! !(!)/!(0)� .
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If we write                                          the dielectric constant becomes ϵ = 1/s, 
if s << 1. 

In a polarization catastrophe the local electric field caused by the ionic
displacement is larger than the elastic restoring force, thereby giving an asym-
metrical shift in the positions of the ions. Higher order restoring forces will
limit the shift to a finite displacement.

The occurrence of ferroelectricity (and antiferroelectricity) in many 
perovskite-structure crystals suggests that this structure is favorably disposed
to a displacive transition. Local field calculations make clear the reason for the
favored position of this structure: the O2! ions do not have cubic surround-
ings, and the local field factors turn out to be unusually large.

We give first the simple form of the catastrophe theory, supposing that the
local field at all atoms is equal to E " 4!P/3 in CGS or E " P/3"0 in SI. The 
theory given now leads to a second-order transition; the physical ideas can be car-
ried over to a first-order transition. In a second-order transition there is no latent
heat; the order parameter (in this instance, the polarization) is not discontinuous
at the transition temperature. In a first-order transition there is a latent heat; the
order parameter changes discontinuously at the transition temperature.

We rewrite (24) for the dielectric constant in the form

(CGS) (30)

where #i is the electronic plus ionic polarizability of an ion of type i and Ni is
the number of ions i per unit volume. The dielectric constant becomes infinite
and permits a finite polarization in zero applied field when

(CGS) (31)

This is the condition for a polarization catastrophe.
The value of " in (30) is sensitive to small departures of ! Ni#i from the

critical value 3/4!. If we write

(CGS) (32)

where s # 1, the dielectric constant in (30) becomes

(33)

Suppose near the critical temperature s varies linearly with temperature:

(34)

where $ is a constant. Such a variation of s or ! Ni#i might come from normal
thermal expansion of the lattice. The dielectric constant has the form

(35)

close to the observed temperature variation in the paraelectric state, Fig. 12.
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Suppose near the critical temperature Tc , s varies linearly with temperature: 
s = (T−Tc)/𝜉 , where 𝜉 is a constant. Then the dielectric constant has the form 

In a polarization catastrophe the local electric field caused by the ionic
displacement is larger than the elastic restoring force, thereby giving an asym-
metrical shift in the positions of the ions. Higher order restoring forces will
limit the shift to a finite displacement.

The occurrence of ferroelectricity (and antiferroelectricity) in many 
perovskite-structure crystals suggests that this structure is favorably disposed
to a displacive transition. Local field calculations make clear the reason for the
favored position of this structure: the O2! ions do not have cubic surround-
ings, and the local field factors turn out to be unusually large.

We give first the simple form of the catastrophe theory, supposing that the
local field at all atoms is equal to E " 4!P/3 in CGS or E " P/3"0 in SI. The 
theory given now leads to a second-order transition; the physical ideas can be car-
ried over to a first-order transition. In a second-order transition there is no latent
heat; the order parameter (in this instance, the polarization) is not discontinuous
at the transition temperature. In a first-order transition there is a latent heat; the
order parameter changes discontinuously at the transition temperature.

We rewrite (24) for the dielectric constant in the form

(CGS) (30)

where #i is the electronic plus ionic polarizability of an ion of type i and Ni is
the number of ions i per unit volume. The dielectric constant becomes infinite
and permits a finite polarization in zero applied field when

(CGS) (31)

This is the condition for a polarization catastrophe.
The value of " in (30) is sensitive to small departures of ! Ni#i from the

critical value 3/4!. If we write

(CGS) (32)

where s # 1, the dielectric constant in (30) becomes

(33)

Suppose near the critical temperature s varies linearly with temperature:

(34)

where $ is a constant. Such a variation of s or ! Ni#i might come from normal
thermal expansion of the lattice. The dielectric constant has the form

(35)

close to the observed temperature variation in the paraelectric state, Fig. 12.

"  !  

$
T ! Tc

� ,

s ! (T ! Tc)/$� ,

" ! 1/s� .

(4!/3)!Ni#i $ 1 ! 3s� ,
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close to the observed temperature varia/on in the paraelectric state shown 
below.



SoB Op@cal Phonons
According to the Lyddane-Sachs-Teller rela/on,                                 , the sta/c 
dielectric constant increases when the transverse op/cal phonon frequency 
decreases. When the sta/c dielectric constant ϵ(0) has a high value, such as 
100 to 10,000, we find that ωT has a low value. When ωT = 0 the crystal is 
unstable and ϵ(0) is infinite because there is no effec/ve restoring force.

Landau Theory of the Phase Transition

A ferroelectric with a first-order phase transition between the ferroelec-
tric and the paraelectric state is distinguished by a discontinuous change of the
saturation polarization at the transition temperature. The transition between
the normal and superconducting states is a second-order transition, as is the
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The association of a high static 
dielectric constant with a low-frequency 
optical mode is supported by 
experiments on strontium titanate, 
SrTiO3. According to the LST relation, if 
the reciprocal of the static dielectric 
constant has a temperature 
dependence 1/ϵ(0) ∝ (T − T0), then the 
square of the optical mode frequency 
will have a similar temperature 
dependence: ωT

2 ∝ (T − T0), if ωL is 
independent of temperature. 

Soft Optical Phonons

The Lyddane-Sachs-Teller relation (Chapter 14) is

(36)

The static dielectric constant increases when the transverse optical phonon fre-
quency decreases. When the static dielectric constant !(0) has a high value,
such as 100 to 10,000, we find that "T has a low value.

When "T ! 0 the crystal is unstable and !(0) is infinite because there is no
effective restoring force. The ferroelectric BaTiO3 at 24°C has a TO mode at
12 cm"1, a low frequency for an optical mode.

If the transition to a ferroelectric state is first order, we do not find "T ! 0
or !(0) ! ! at the transition. The LST relation suggests only that !(0) extrapo-
lates to a singularity at a temperature T0 below Tc.

The association of a high static dielectric constant with a low-frequency
optical mode is supported by experiments on strontium titanate, SrTiO3. 
According to the LST relation, if the reciprocal of the static dielectric constant
has a temperature dependence 1/!(0) " (T " T0), then the square of the 
optical mode frequency will have a similar temperature dependence: 
"2

T " (T " T0), if "L is independent of temperature. The result for "2
T is 

very well confirmed by Fig. 13. Measurements of "T versus T for another 
ferroelectric crystal, SbSI, are shown in Fig. 14.

"2
T/"2

L ! !(!)/!(0)� .
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Landau Theory of the Phase Transi@on
A ferroelectric with a first-order phase transi/on between the ferroelectric and 
the paraelectric state is dis/nguished by a discon/nuous change of the 
satura/on polariza/on at the transi/on temperature. The transi/on between 
the ferromagne/c and paramagne/c states is second-order. In this transi/on the 
degree of order goes to zero without a discon/nuous change as the temperature 
is increased. We assume that the Landau free energy density F in one dimension 
may be expanded formally as

transition between the ferromagnetic and paramagnetic states. In these transi-
tions the degree of order goes to zero without a discontinuous change as the
temperature is increased.

We can obtain a consistent formal thermodynamic theory of the behavior
of a ferroelectric crystal by considering the form of the expansion of the en-
ergy as a function of the polarization P. We assume that the Landau7 free en-
ergy density in one dimension may be expanded formally as

(37)

where the coefficients gn depend on the temperature.
The series does not contain terms in odd powers of P if the unpolarized

crystal has a center of inversion symmetry, but crystals are known in which odd
powers are important. Power series expansions of the free energy do not al-
ways exist, for nonanalytic terms are known to occur, especially when very near
a transition. For example, the transition in KH2PO4 appears to have a logarith-
mic singularity in the heat capacity at the transition, which is not classifiable as
either first or second order.

The value of P in thermal equilibrium is given by the minimum of as a
function of P; the value of at this minimum defines the Helmholtz free en-
ergy F(T,E). The equilibrium polarization in an applied electric field E satis-
fies the extremum condition

(38)

In this section we assume that the specimen is a long rod with the external ap-
plied field E parallel to the long axis.

To obtain a ferroelectric state we must suppose that the coefficient of the
term in P2 in (37) passes through zero at some temperature T0:

(39)

where ! is taken as a positive constant and T0 may be equal to or lower than
the transition temperature. A small positive value of g2 means that the lattice is
“soft” and is close to instability. A negative value of g2 means that the unpolar-
ized lattice is unstable. The variation of g2 with temperature is accounted for
by thermal expansion and other effects of anharmonic lattice interactions.

Second-Order Transition

If g4 in (37) is positive, nothing new is added by the term in g6, and this
may then be neglected. The polarization for zero applied electric field is found
from (38):

(40)!(T ! T0)Ps " g4P3
s  # 0� ,

g2 # !(T ! T0)� ,

$F̂
$P # 0 # !E " g2P " g4P3

 " g6P5
 " 

Á� .

F̂
F̂

F̂(P;T,E) # !EP " g0 " 

1
2

 

g2P2
 " 

1
4

 

g4P4
 " 

1
6

 

g6P6
 " 

Á� ,

F̂
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where P is the polariza/on of a ferroelectric crystal and the coefficients 𝗀n 
depend on the temperature. The equilibrium polariza/on in an applied electric 
field E sa/sfies the extremum condi/on 

transition between the ferromagnetic and paramagnetic states. In these transi-
tions the degree of order goes to zero without a discontinuous change as the
temperature is increased.

We can obtain a consistent formal thermodynamic theory of the behavior
of a ferroelectric crystal by considering the form of the expansion of the en-
ergy as a function of the polarization P. We assume that the Landau7 free en-
ergy density in one dimension may be expanded formally as

(37)

where the coefficients gn depend on the temperature.
The series does not contain terms in odd powers of P if the unpolarized

crystal has a center of inversion symmetry, but crystals are known in which odd
powers are important. Power series expansions of the free energy do not al-
ways exist, for nonanalytic terms are known to occur, especially when very near
a transition. For example, the transition in KH2PO4 appears to have a logarith-
mic singularity in the heat capacity at the transition, which is not classifiable as
either first or second order.

The value of P in thermal equilibrium is given by the minimum of as a
function of P; the value of at this minimum defines the Helmholtz free en-
ergy F(T,E). The equilibrium polarization in an applied electric field E satis-
fies the extremum condition

(38)

In this section we assume that the specimen is a long rod with the external ap-
plied field E parallel to the long axis.

To obtain a ferroelectric state we must suppose that the coefficient of the
term in P2 in (37) passes through zero at some temperature T0:

(39)

where ! is taken as a positive constant and T0 may be equal to or lower than
the transition temperature. A small positive value of g2 means that the lattice is
“soft” and is close to instability. A negative value of g2 means that the unpolar-
ized lattice is unstable. The variation of g2 with temperature is accounted for
by thermal expansion and other effects of anharmonic lattice interactions.

Second-Order Transition

If g4 in (37) is positive, nothing new is added by the term in g6, and this
may then be neglected. The polarization for zero applied electric field is found
from (38):

(40)!(T ! T0)Ps " g4P3
s  # 0� ,

g2 # !(T ! T0)� ,
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$P # 0 # !E " g2P " g4P3
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If the specimen is a long rod with the external applied field E parallel to the long 
axis. To obtain a ferroelectric state we must suppose that the coefficient of the 
term in P2 passes through zero at some temperature T0:                             where 𝛾 
is taken as a positive constant and a small positive value of g2 means that the 
lattice is “soft” and is close to instability. 

transition between the ferromagnetic and paramagnetic states. In these transi-
tions the degree of order goes to zero without a discontinuous change as the
temperature is increased.

We can obtain a consistent formal thermodynamic theory of the behavior
of a ferroelectric crystal by considering the form of the expansion of the en-
ergy as a function of the polarization P. We assume that the Landau7 free en-
ergy density in one dimension may be expanded formally as

(37)
where the coefficients gn depend on the temperature.

The series does not contain terms in odd powers of P if the unpolarized
crystal has a center of inversion symmetry, but crystals are known in which odd
powers are important. Power series expansions of the free energy do not al-
ways exist, for nonanalytic terms are known to occur, especially when very near
a transition. For example, the transition in KH2PO4 appears to have a logarith-
mic singularity in the heat capacity at the transition, which is not classifiable as
either first or second order.

The value of P in thermal equilibrium is given by the minimum of as a
function of P; the value of at this minimum defines the Helmholtz free en-
ergy F(T,E). The equilibrium polarization in an applied electric field E satis-
fies the extremum condition

(38)

In this section we assume that the specimen is a long rod with the external ap-
plied field E parallel to the long axis.

To obtain a ferroelectric state we must suppose that the coefficient of the
term in P2 in (37) passes through zero at some temperature T0:

(39)
where ! is taken as a positive constant and T0 may be equal to or lower than
the transition temperature. A small positive value of g2 means that the lattice is
“soft” and is close to instability. A negative value of g2 means that the unpolar-
ized lattice is unstable. The variation of g2 with temperature is accounted for
by thermal expansion and other effects of anharmonic lattice interactions.

Second-Order Transition
If g4 in (37) is positive, nothing new is added by the term in g6, and this

may then be neglected. The polarization for zero applied electric field is found
from (38):

(40)!(T ! T0)Ps " g4P3
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g2 # !(T ! T0)� ,
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Second-Order Transi@on
If g4 in Landau equa/on is posi/ve, nothing new is added by the term in g6, 
and this may then be neglected. The polariza/on for zero applied electric 
field is found:

transition between the ferromagnetic and paramagnetic states. In these transi-
tions the degree of order goes to zero without a discontinuous change as the
temperature is increased.

We can obtain a consistent formal thermodynamic theory of the behavior
of a ferroelectric crystal by considering the form of the expansion of the en-
ergy as a function of the polarization P. We assume that the Landau7 free en-
ergy density in one dimension may be expanded formally as

(37)

where the coefficients gn depend on the temperature.
The series does not contain terms in odd powers of P if the unpolarized

crystal has a center of inversion symmetry, but crystals are known in which odd
powers are important. Power series expansions of the free energy do not al-
ways exist, for nonanalytic terms are known to occur, especially when very near
a transition. For example, the transition in KH2PO4 appears to have a logarith-
mic singularity in the heat capacity at the transition, which is not classifiable as
either first or second order.

The value of P in thermal equilibrium is given by the minimum of as a
function of P; the value of at this minimum defines the Helmholtz free en-
ergy F(T,E). The equilibrium polarization in an applied electric field E satis-
fies the extremum condition

(38)

In this section we assume that the specimen is a long rod with the external ap-
plied field E parallel to the long axis.

To obtain a ferroelectric state we must suppose that the coefficient of the
term in P2 in (37) passes through zero at some temperature T0:

(39)

where ! is taken as a positive constant and T0 may be equal to or lower than
the transition temperature. A small positive value of g2 means that the lattice is
“soft” and is close to instability. A negative value of g2 means that the unpolar-
ized lattice is unstable. The variation of g2 with temperature is accounted for
by thermal expansion and other effects of anharmonic lattice interactions.

Second-Order Transition

If g4 in (37) is positive, nothing new is added by the term in g6, and this
may then be neglected. The polarization for zero applied electric field is found
from (38):

(40)!(T ! T0)Ps " g4P3
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For T ≥ T0 the only real root of the above eq. is at Ps = 0, because 𝛾 and g4 are 
posi/ve. Thus T0 is the Curie temperature. For T < T0 the minimum of the 
Landau free energy in zero applied field is at 

so that either Ps ! 0 or P2
s ! (!/g4)(T0 " T). For T # T0 the only real root of (40)

is at Ps ! 0, because ! and g4 are positive. Thus T0 is the Curie temperature. For
T $ T0 the minimum of the Landau free energy in zero applied field is at

(41)

as plotted in Fig. 15. The phase transition is a second-order transition because
the polarization goes continuously to zero at the transition temperature. The
transition in LiTaO3 is an example (Fig. 16) of a second-order transition.

!Ps ! ! (!/g4)1/2(T0 " T)1/2� ,
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so that either Ps ! 0 or P2
s ! (!/g4)(T0 " T). For T # T0 the only real root of (40)

is at Ps ! 0, because ! and g4 are positive. Thus T0 is the Curie temperature. For
T $ T0 the minimum of the Landau free energy in zero applied field is at

(41)

as plotted in Fig. 15. The phase transition is a second-order transition because
the polarization goes continuously to zero at the transition temperature. The
transition in LiTaO3 is an example (Fig. 16) of a second-order transition.
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The phase transition is a second-order transition because the polarization 
goes continuously to zero at the transition temperature. The transition in 
LiTaO3 is an example of a second-order transition. 

so that either Ps ! 0 or P2
s ! (!/g4)(T0 " T). For T # T0 the only real root of (40)

is at Ps ! 0, because ! and g4 are positive. Thus T0 is the Curie temperature. For
T $ T0 the minimum of the Landau free energy in zero applied field is at

(41)

as plotted in Fig. 15. The phase transition is a second-order transition because
the polarization goes continuously to zero at the transition temperature. The
transition in LiTaO3 is an example (Fig. 16) of a second-order transition.
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First-Order Transi@on
The transi/on is first order if g4 is nega/ve. We must now retain g6 and take it 
posi/ve in order to restrain F from going to minus infinity. The equilibrium 
condi/on for E = 0 is given by 

First-Order Transition

The transition is first order if g4 in (37) is negative. We must now retain g6

and take it positive in order to restrain from going to minus infinity (Fig. 17).
The equilibrium condition for E ! 0 is given by (38):

(42)

so that either Ps ! 0 or

(43)

At the transition temperature Tc the free energies of the paraelectric and
ferroelectric phases will be equal. That is, the value of for Ps ! 0 will be equal
to the value of at the minimum given by (43). In Fig. 18 we show the charac-
teristic variation with temperature of Ps for a first-order phase transition; 

F̂
F̂

!(T " T0) " !g4 !P2
s  # g6 P4

s  ! 0� .

!(T " T0)Ps " !g4 !P3
s  # g6 P5

s  ! 0� ,

F̂
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so that either Ps = 0 or

First-Order Transition

The transition is first order if g4 in (37) is negative. We must now retain g6

and take it positive in order to restrain from going to minus infinity (Fig. 17).
The equilibrium condition for E ! 0 is given by (38):

(42)

so that either Ps ! 0 or

(43)

At the transition temperature Tc the free energies of the paraelectric and
ferroelectric phases will be equal. That is, the value of for Ps ! 0 will be equal
to the value of at the minimum given by (43). In Fig. 18 we show the charac-
teristic variation with temperature of Ps for a first-order phase transition; 
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First-Order Transition

The transition is first order if g4 in (37) is negative. We must now retain g6

and take it positive in order to restrain from going to minus infinity (Fig. 17).
The equilibrium condition for E ! 0 is given by (38):

(42)

so that either Ps ! 0 or

(43)

At the transition temperature Tc the free energies of the paraelectric and
ferroelectric phases will be equal. That is, the value of for Ps ! 0 will be equal
to the value of at the minimum given by (43). In Fig. 18 we show the charac-
teristic variation with temperature of Ps for a first-order phase transition; 
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BaTiO3

In equilibrium at temperatures over the transi/on, the terms in P4 and P6 may 
be neglected; thus E = 𝛾(T − T0)P ,  or 

contrast this with the variation shown in Fig. 15 for a second-order phase tran-
sition. The transition in BaTiO3 is first order.

The dielectric constant is calculated from the equilibrium polarization in
an applied electric field E and is found from (38). In equilibrium at tempera-
tures over the transition, the terms in P4 and P6 may be neglected; thus E !
!(T " T0)P, or

(CGS) (44)

of the form of (36). The result applies whether the transition is of the first or
second order, but if second order we have T0 ! Tc; if first order, then T0 # Tc.
Equation (39) defines T0, but Tc is the transition temperature.

"(T ! Tc) ! 1 $ 4#P/E ! 1 $ 4#/!(T " T0)� ,
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Figure 19  Schematic representation of fundamental types of structural phase transitions from a
centrosymmetric prototype. (After Lines and Glass.)
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The result applies whether the transi/on is of the first or second order, but if 
second order we have T0 = Tc ; if first order, then T0 < Tc. Here, T0 is defined as 
the value of g2 equals to zero and Tc is the transi/on temperature. 

At the transition temperature Tc the free 
energies of the paraelectric and 
ferroelectric phases will be equal. That is, 
the value of F for Ps=0 will be equal to the 
value of F at the minimum given above. 
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contrast this with the variation shown in Fig. 15 for a second-order phase tran-
sition. The transition in BaTiO3 is first order.

The dielectric constant is calculated from the equilibrium polarization in
an applied electric field E and is found from (38). In equilibrium at tempera-
tures over the transition, the terms in P4 and P6 may be neglected; thus E !
!(T " T0)P, or

(CGS) (44)

of the form of (36). The result applies whether the transition is of the first or
second order, but if second order we have T0 ! Tc; if first order, then T0 # Tc.
Equation (39) defines T0, but Tc is the transition temperature.
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Prototypical Phase Transi@ons
A ferroelectric displacement is not the only type of instability that may 
develop in a dielectric crystal. Other deforma/ons occur, as shown below. 

One type of deforma/on is called 
an5ferroelectric and has neighboring 
lines of ions displaced in opposite 
senses. The perovskite structure 
appears to be suscep/ble to many 
types of deforma/on, o_en with 
liNle difference in energy.

Antiferroelectricity

A ferroelectric displacement is not the only type of instability that may 
develop in a dielectric crystal. Other deformations occur, as in Fig. 19. These
deformations, even if they do not give a spontaneous polarization, may be ac-
companied by changes in the dielectric constant. One type of deformation is
called antiferroelectric and has neighboring lines of ions displaced in oppo-
site senses. The perovskite structure appears to be susceptible to many types of
deformation, often with little difference in energy between them. The phase 
diagrams of mixed perovskite systems, such as the PbZrO3–PbTiO3 system,
show transitions between para-, ferro-, and antiferroelectric states (Fig. 20).
Several crystals believed to have an ordered nonpolar state are listed in Table 3.

Ferroelectric Domains

Consider a ferroelectric crystal (such as barium titanate in the tetragonal
phase) in which the spontaneous polarization may be either up or down the c
axis of the crystal. A ferroelectric crystal generally consists of regions called
domains within each of which the polarization is in the same direction, but in
adjacent domains the polarization is in different directions. In Fig. 21 the po-
larization is in opposite directions. The net polarization depends on the differ-
ence in the volumes of the upward- and downward-directed domains. The
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Figure 20  Ferroelectric F, antiferroelectric A, and paraelectric P phases of the lead zirconate–lead
titanate solid solution system. The subscript T denotes a tetragonal phase; C a cubic phase; R a
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Near the rhombohedral–tetragonal phase boundaries one finds very high piezoelectric coupling 
coefficients. (After Jaffe.)
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PbZrO3-PbTiO3 
mixed system



Ferroelectric Domains
A ferroelectric crystal consists of regions 
called domains within each of which the 
polariza/on is in the same direc/on, but in 
adjacent domains the polariza/on is in 
different direc/ons. The net polariza/on 
depends on the difference in the volumes of 
the upward- and downward-directed domains. 

crystal as a whole will appear to be unpolarized, as measured by the charge on
electrodes covering the ends, when the volumes of domains in opposite senses
are equal. The total dipole moment of the crystal may be changed by the
movement of the walls between domains or by the nucleation of new domains.

Figure 22 is a series of photomicrographs of a single crystal of barium 
titanate in an electric field normal to the plane of the photographs and parallel
to the tetragonal axis. The closed curves are boundaries between domains 
polarized into and out of the plane of the photographs. The domain bound-
aries change size and shape when the intensity of the electric field is altered.
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Table 3  Antiferroelectric crystals

Transition temperature to 
Crystal antiferroelectric state, in K

WO3 1010
NaNbO3 793, 911
PbZrO3 506
PbHfO3 488
NH4H2PO4 148
ND4D2PO4 242
NH4H2AsO4 216
ND4D2AsO4 304
(NH4)2H3IO6 254

From a compilation by Walter J. Merz.

(a) (b)

P P

+ +

+ +

+ +
+ +

+ +

+ +

Figure 21  (a) Schematic drawing of atomic displacements on either side of a boundary between
domains polarized in opposite directions in a ferroelectric crystal; (b) view of a domain structure,
showing 180° boundaries between domains polarized in opposite directions.

DI���RYE����������������1.��1BHF����

Piezoelectricity

All crystals in a ferroelectric state are also piezoelectric: a stress Z applied
to the crystal will change the electric polarization (Fig. 23). Similarly, an elec-
tric field E applied to the crystal will cause the crystal to become strained. In
schematic one-dimensional notation, the piezoelectric equations are

(CGS) (45)

where P is the polarization, Z the stress, d the piezoelectric strain constant,
E the electric field, ! the dielectric susceptibility, e the elastic strain, and s the
elastic compliance constant. To obtain (45) in SI, replace ! by "0!. These rela-
tions exhibit the development of polarization by an applied stress and the de-
velopment of elastic strain by an applied electric field.

A crystal may be piezoelectric without being ferroelectric: a schematic ex-
ample of such a structure is given in Fig. 24. Quartz is piezoelectric, but not
ferroelectric; barium titanate is both. For order of magnitude, in quartz d
10!7 cm/statvolt and in barium titanate d 10!5 cm/statvolt. The general defi-
nition of the piezoelectric strain constants is

(46)

where i ! x, y, z and k ! xx, yy, zz, yz, zx, xy. To convert to cm/stat-V from 
values of dik given in m/V, multiply by 3 " 104.

The lead zirconate–lead titanate system (called the PZT system), Fig. 20,
is widely used in polycrystalline (ceramic) form with compositions of very high
piezoelectric coupling. The synthetic polymer polyvinylidenfluoride (PVF2) is

dik # ($ek/$Ei)Z� ,

!
!

P # Zd % E!; � e # Zs % Ed� ,
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Figure 22  Ferroelectric domains on the face of a single crystal of barium titanate. The face is
normal to the tetragonal or c axis. The net polarization of the crystal as judged by domain volumes
is increased markedly as the electric field intensity parallel to the axis is increased from 550
volts/cm to 980 V/cm. The domain boundaries are made visible by etching the crystal in a weak
acid solution. (R. C. Miller.)
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Ferroelectric domains on the face 
of barium /tanate. The face is 
normal to the tetragonal or c axis. 
The net polariza/on of the crystal 
is increased markedly as the 
electric field intensity parallel to 
the axis is increased from 550 
V/cm to 980 V/cm. 



Piezoelectricity
All crystals in a ferroelectric state are also piezoelectric: a stress Z applied to 
the crystal will change the electric polariza/on. Similarly, an electric field E 
applied to the crystal will cause the crystal to become strained. In schema/c 
one-dimensional nota/on, the piezoelectric equa/ons are 

where P is the polariza/on, Z the stress, d the piezoelectric strain constant, E 
the electric field, χ the dielectric suscep/bility, e the elas/c strain, and s the 
elas/c compliance constant. 

Piezoelectricity

All crystals in a ferroelectric state are also piezoelectric: a stress Z applied
to the crystal will change the electric polarization (Fig. 23). Similarly, an elec-
tric field E applied to the crystal will cause the crystal to become strained. In
schematic one-dimensional notation, the piezoelectric equations are

(CGS) (45)

where P is the polarization, Z the stress, d the piezoelectric strain constant,
E the electric field, ! the dielectric susceptibility, e the elastic strain, and s the
elastic compliance constant. To obtain (45) in SI, replace ! by "0!. These rela-
tions exhibit the development of polarization by an applied stress and the de-
velopment of elastic strain by an applied electric field.

A crystal may be piezoelectric without being ferroelectric: a schematic ex-
ample of such a structure is given in Fig. 24. Quartz is piezoelectric, but not
ferroelectric; barium titanate is both. For order of magnitude, in quartz d
10!7 cm/statvolt and in barium titanate d 10!5 cm/statvolt. The general defi-
nition of the piezoelectric strain constants is

(46)

where i ! x, y, z and k ! xx, yy, zz, yz, zx, xy. To convert to cm/stat-V from 
values of dik given in m/V, multiply by 3 " 104.

The lead zirconate–lead titanate system (called the PZT system), Fig. 20,
is widely used in polycrystalline (ceramic) form with compositions of very high
piezoelectric coupling. The synthetic polymer polyvinylidenfluoride (PVF2) is
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Figure 22  Ferroelectric domains on the face of a single crystal of barium titanate. The face is
normal to the tetragonal or c axis. The net polarization of the crystal as judged by domain volumes
is increased markedly as the electric field intensity parallel to the axis is increased from 550
volts/cm to 980 V/cm. The domain boundaries are made visible by etching the crystal in a weak
acid solution. (R. C. Miller.)
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five times more strongly piezoelectric than crystalline quartz. Thin stretched
films of PVF2 are flexible and as ultrasonic transducers are applied in medicine
to monitor blood pressure and respiration.

SUMMARY
(In CGS Units)

• The electric field averaged over the volume of the specimen defines the
macroscopic electric field E of the Maxwell equations.

• The electric field that acts at the site rj of an atom j is the local electric field,
Eloc. It is a sum over all charges, grouped in terms as Eloc(rj) ! E0 " E1 "
E2 " E3(rj), where only E3 varies rapidly within a cell. Here:
E0 ! external electric field;
E1 ! depolarization field associated with the boundary of the specimen;
E2 ! field from polarization outside a sphere centered about rj;
E3(rj) ! field at rj due to all atoms inside the sphere.
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Figure 23  (a) Unstressed ferroelectric crystal and (b) stressed ferroelectric crystal. The stress
changes the polarization by #P, the induced piezoelectric polarization.

P

(b)(a)
Stress

Figure 24  (a) The unstressed crystal has a threefold symmetry axis. The arrows represent dipole
moments; each set of three arrows represents a planar group of ions denoted by A"

3B3$, with a 
B3$ ion at each vertex. The sum of the three dipole moments at each vertex is zero. (b) The crystal
when stressed develops a polarization in the direction indicated. The sum of the dipole moments
about each vertex is no longer zero.
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The general defini/on of the piezoelectric strain constants is 

Piezoelectricity

All crystals in a ferroelectric state are also piezoelectric: a stress Z applied
to the crystal will change the electric polarization (Fig. 23). Similarly, an elec-
tric field E applied to the crystal will cause the crystal to become strained. In
schematic one-dimensional notation, the piezoelectric equations are

(CGS) (45)

where P is the polarization, Z the stress, d the piezoelectric strain constant,
E the electric field, ! the dielectric susceptibility, e the elastic strain, and s the
elastic compliance constant. To obtain (45) in SI, replace ! by "0!. These rela-
tions exhibit the development of polarization by an applied stress and the de-
velopment of elastic strain by an applied electric field.

A crystal may be piezoelectric without being ferroelectric: a schematic ex-
ample of such a structure is given in Fig. 24. Quartz is piezoelectric, but not
ferroelectric; barium titanate is both. For order of magnitude, in quartz d
10!7 cm/statvolt and in barium titanate d 10!5 cm/statvolt. The general defi-
nition of the piezoelectric strain constants is

(46)

where i ! x, y, z and k ! xx, yy, zz, yz, zx, xy. To convert to cm/stat-V from 
values of dik given in m/V, multiply by 3 " 104.

The lead zirconate–lead titanate system (called the PZT system), Fig. 20,
is widely used in polycrystalline (ceramic) form with compositions of very high
piezoelectric coupling. The synthetic polymer polyvinylidenfluoride (PVF2) is
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Figure 22  Ferroelectric domains on the face of a single crystal of barium titanate. The face is
normal to the tetragonal or c axis. The net polarization of the crystal as judged by domain volumes
is increased markedly as the electric field intensity parallel to the axis is increased from 550
volts/cm to 980 V/cm. The domain boundaries are made visible by etching the crystal in a weak
acid solution. (R. C. Miller.)
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where i ≡ x, y, z and k ≡ xx, yy, zz, yz, zx, xy. To convert to cm/stat-V from 
values of dik given in m/V, mul/ply by 3 × 104 . 



The lead zirconate-lead titanate system (called the PZT system) is widely used 
in polycrystalline (ceramic) form with compositions of very high piezoelectric 
coupling. The synthetic polymer poly-vinylidenfluoride (PVF2) is five times 
more strongly piezoelectric than crystalline quartz. Thin stretched films of 
PVF2 are flexible and as ultrasonic transducers are applied in medicine to 
monitor blood pressure and respiration. 

five times more strongly piezoelectric than crystalline quartz. Thin stretched
films of PVF2 are flexible and as ultrasonic transducers are applied in medicine
to monitor blood pressure and respiration.

SUMMARY
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• The electric field averaged over the volume of the specimen defines the
macroscopic electric field E of the Maxwell equations.

• The electric field that acts at the site rj of an atom j is the local electric field,
Eloc. It is a sum over all charges, grouped in terms as Eloc(rj) ! E0 " E1 "
E2 " E3(rj), where only E3 varies rapidly within a cell. Here:
E0 ! external electric field;
E1 ! depolarization field associated with the boundary of the specimen;
E2 ! field from polarization outside a sphere centered about rj;
E3(rj) ! field at rj due to all atoms inside the sphere.
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Figure 23  (a) Unstressed ferroelectric crystal and (b) stressed ferroelectric crystal. The stress
changes the polarization by #P, the induced piezoelectric polarization.
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Figure 24  (a) The unstressed crystal has a threefold symmetry axis. The arrows represent dipole
moments; each set of three arrows represents a planar group of ions denoted by A"

3B3$, with a 
B3$ ion at each vertex. The sum of the three dipole moments at each vertex is zero. (b) The crystal
when stressed develops a polarization in the direction indicated. The sum of the dipole moments
about each vertex is no longer zero.
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A crystal may be piezoelectric without being ferroelectric: a schema/c 
example of such a structure is illustrated below. Quartz is piezoelectric, but 
not ferroelectric; barium /tanate is both. For order of magnitude, in quartz d 
≃ 10−7 cm/statvolt and in barium /tanate d ≃ 10−5 cm/statvolt. 



Piezoelectric Response

Strain: S1 = dx/x, S3 = dz/z

Electric field:  E3 = V/z
Piezoelectric Coeff.:  d33 = S3/E3 , d31 = S1/E3

Typical values for d31 ~ -1 Å/V, d33 ~ 3 Å/V.

R.T.



Inchworm Motor



Piezoelectric Scanner

Tripod scanner Tube scanner

S1 = dx/x = d31E3 = d31V/z

Piezoelectric Constant: 

K = dx/dV = d31L/h

Resonance Freq. for bending:

f = 0.56 кC/L2 , к = h/√12

Piezoelectric Constant: 

K = dx/dV = 2√2d31L2/pDh 

Resonance Freq. for bending:

f = 0.56 кC/L2 , к = (D2 +d2)1/2/8



Problems 
1. Polarizability of conducting sphere. Show that the polarizability of a 

conducting metallic sphere of radius a is α = a3 . This result is most easily 
obtained by noting that E = 0 inside the sphere and then using the 
depolarization factor 4𝜋/3 for a sphere. The result gives values of α of the 
order of magnitude of the observed polarizabilities of atoms. A lattice of 
N conducting spheres per unit volume has dielectric constant ϵ = 1 +
4𝜋Na3, for Na << 1. The suggested proportionality of α to the cube of the 
ionic radius is satisfied quite well for alkali and halogen ions.

2. Dielectric constant below transi+on temperature. In terms of the 
parameters in the Landau free energy expansion, show that for a second-
order phase transi/on the dielectric constant below the transi/on 
temperature is 

and thickness qd—behaves as if the space between the condenser plates were
filled with a homogeneous dielectric with dielectric constant

where ! is the angular frequency. Values of "eff as high as 104 or 105 caused largely
by this Maxwell-Wagner mechanism are sometimes found, but the high values are
always accompanied by large ac losses.

5. Polarization of sphere. A sphere of dielectric constant " is placed in a uniform ex-
ternal electric field E0. (a) What is the volume average electric field E in the sphere?
(b) Show that the polarization in the sphere is P ! #E0 /[1 " (4$#/3)], where # !

(" # 1)/4$. Hint: You do not need to calculate Eloc in this problem; in fact it is con-
fusing to do so, because " and # are defined so that P ! #E. We require E0 to be un-
changed by insertion of the sphere. We can produce a fixed E0 by placing positive
charges on one thin plate of an insulator and negative charges on an opposite plate. If
the plates are always far from the sphere, the field of the plates will remain un-
changed when the sphere is inserted between them. The results above are in CGS.

6. Ferroelectric criterion for atoms. Consider a system of two neutral atoms sepa-
rated by a fixed distance a, each atom having a polarizability %. Find the relation
between a and % for such a system to be ferroelectric. Hint: The dipolar field is
strongest along the axis of the dipole.

7. Saturation polarization at Curie point. In a first-order transition the equilibrium
condition (43) with T set equal to Tc gives one equation for the polarization Ps(Tc). 
A further condition at the Curie point is that (Ps, Tc) ! (0, Tc). (a) Combining
these two conditions, show that P2

s(Tc) ! 3|g4|/4g6. (b) Using this result, show that
Tc ! T0 " 3g2

4 /16&g6.

8. Dielectric constant below transition temperature. In terms of the parameters
in the Landau free energy expansion, show that for a second-order phase transition
the dielectric constant below the transition temperature is

This result may be compared with (44) above the transition.

9. Soft modes and lattice transformations. Sketch a monatomic linear lattice of
lattice constant a. (a) Add to each of six atoms a vector to indicate the direction of
the displacement at a given time caused by a longitudinal phonon with wavevector
at the zone boundary. (b) Sketch the crystal structure that results if this zone
boundary phonon becomes unstable (! m 0) as the crystal is cooled through Tc. 
(c) Sketch on one graph the essential aspects of the longitudinal phonon dispersion
relation for the monatomic lattice at T well above Tc and at T ! Tc. Add to the
graph the same information for phonons in the new structure at T well below Tc.

10. Ferroelectric linear array. Consider a line of atoms of polarizability % and sepa-
ration a. Show that the array can polarize spontaneously if % $ a3/4!n#3, where
the sum is over all positive integers and is given in tables as 1.202. . . .

" ! 1 " 4$%P/E ! 1 " 2$/&(Tc # T)� .

F̂F̂

"eff ! 
"(1 " q)

1 # (i"!q/4$')
� ,
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3. So@ modes and laAce transforma+ons. Sketch a monatomic linear 
la>ce of la>ce constant a. (a) Add to each of six atoms a vector to 
indicate the direc/on of the displacement at a given /me caused by a 
longitudinal phonon with wavevector at the zone boundary. (b) Sketch 
the crystal structure that results if this zone boundary phonon becomes 
unstable (ω → 0) as the crystal is cooled through Tc . (c) Sketch on one 
graph the essen/al aspects of the longitudinal phonon dispersion 
rela/on for the monatomic la>ce at T well above Tc and at T = Tc . Add to 
the graph the same informa/on for phonons in the new structure at T 
well below Tc . 


